Skip to main content
Log in

Polyploidy, evolutionary opportunity, and crop adaptation

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The finding that even the smallest of plant genomes has incurred multiple genome-wide chromatin duplication events, some of which may predate the origins of the angiosperms and therefore shape all of flowering plant biology, adds new importance to the molecular analysis of polyploidization/diploidization cycles and their phenotypic consequences. Early clues as to the possible phenotypic consequences of polyploidy derive from recent QTL mapping efforts in a number of diverse crop plants of recent and well-defined polyploid origins. A small sampling examples of the role(s) of polyploidy in conferring crop adaptation from human needs include examples of (1) dosage effects of multiple alleles in autopolyploids, and (2) ‘intergenomic heterosis’ conferring novel traits or transgressive levels of existing traits, associated with merging divergent genomes in a common allopolyploid nucleus. A particularly interesting manifestation of #2 is the evolution of complementary alleles at corresponding (‘homoeologous’) loci in divergent polyploid taxa derived from a common ancestor. Burgeoning genomic data for both botanical models and major crops offer new avenues for investigation of the molecular and phenotypic consequences of polyploidy, promising new insights into the role of this important process in the evolution of botanical diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LG:

linkage group

QTL:

quantitative trait locus

RFLP:

restriction fragment length polymorphism

WUE:

water use efficiency

References

  • InstitutionalAuthorNameArabidopsis Genome Initiative (2000) ArticleTitleAnalysis of the genome sequence of the flowering plant Arabidopsis thaliana Nature 408 796–815

    Google Scholar 

  • Anonymous, 1997. Zonal Coordinators Annual Report of All-India Coordinated Cotton Improvement Project.

  • G. Blanc A. Barakat R. Guyot R. Cooke M. Delseny (2000) ArticleTitleExtensive duplication and reshuffling in the Arabidopsis genome Plant Cell 12 1093–1101 Occurrence Handle10.1105/tpc.12.7.1093 Occurrence Handle1:CAS:528:DC%2BD3cXlslygtL0%3D Occurrence Handle10899976

    Article  CAS  PubMed  Google Scholar 

  • J.E. Bowers B.A. Chapman J. Rong A.H. Paterson (2003) ArticleTitleUnravelling angiosperm chromosome evolution by phylogenetic analysis of chromosomal duplication events Nature 422 433–438 Occurrence Handle1:CAS:528:DC%2BD3sXitlGgtbk%3D Occurrence Handle12660784

    CAS  PubMed  Google Scholar 

  • J. Boyer (1982) ArticleTitlePlant productivity and environment Science 281 443–448

    Google Scholar 

  • A. D’Hont P.S. Rao P. Feldmann L. Grivet N. Islamfaridi P. Taylor J.C. Glaszmann (1995) ArticleTitleIdentification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridization Theor. Appl. Genet. 91 320–326

    Google Scholar 

  • N. Eckhardt (2001) ArticleTitleA sense of self: the role of DNA sequence elimination in allopolyploidization Plant Cell 13 1699–1704

    Google Scholar 

  • K.W. Hilu (1993) ArticleTitlePolyploidy and the evolution of domesticated plants Am. J. Bot. 80 1494–1499

    Google Scholar 

  • J.E. Irvine (1999) ArticleTitleSaccharum species as horticultural classes Theor. Appl. Genet. 98 186–194

    Google Scholar 

  • C.X. Jiang R.J. Wright K.M. El-Zik A. H. Paterson (1998) ArticleTitlePolyploid formation created unique avenues for response to selection in Gossypium (cotton) Proc. Natl. Acad. Sci. USA 95 4419–4424 Occurrence Handle1:CAS:528:DyaK1cXis1Ohu7g%3D Occurrence Handle9539752

    CAS  PubMed  Google Scholar 

  • S.P. Kowalski T.H. Lan K.A. Feldmann A.H. Paterson (1994) ArticleTitleComparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved gene order Genetics 138 499–510 Occurrence Handle1:CAS:528:DyaK2MXmtFaqs78%3D Occurrence Handle7828831

    CAS  PubMed  Google Scholar 

  • W. Martin A. Gierl H. Saudler (1989) ArticleTitleMolecular evidence for pre-Cretaceous angiosperm origins Nature 339 46–48 Occurrence Handle1:CAS:528:DyaL1MXktVChsr0%3D

    CAS  Google Scholar 

  • J.M. McGrath M.M. Jancso E. Pichersky (1993) ArticleTitleDuplicate sequences with a similarity to expressed genes in the genome of Arabidopsis thaliana Theor. Appl. Genet. 86 880–888 Occurrence Handle1:CAS:528:DyaK2cXivFSqtrc%3D

    CAS  Google Scholar 

  • R. Ming S.C. Liu P.H. Moore J.E. Irvine A.H. Paterson (2001) ArticleTitleQTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane Genome Res. 11 2075–2084 Occurrence Handle1:CAS:528:DC%2BD3MXovFOgtLw%3D Occurrence Handle11731498

    CAS  PubMed  Google Scholar 

  • G.A. Niles C.V. Feaster (1984) Breeding R.J. Kohel C.F. Lewis (Eds) Cotton American Society of Agronomy Madison, WI, USA 202–229

    Google Scholar 

  • A.H. Paterson Y.R. Lin Z.K. Li K.F. Schertz J.F. Doebley S.R.M. Pinson S.C. Liu J.W. Stansel J.E. Irvine (1995) ArticleTitleConvergent domestication of cereal crops by independent mutations at corresponding genetic loci Science 269 1714–1718 Occurrence Handle1:CAS:528:DyaK2MXot1aitbg%3D Occurrence Handle17821643

    CAS  PubMed  Google Scholar 

  • A.H. Paterson J.E. Bowers M.D. Burow X. Draye C.G. Elsik C.X. Jiang C.S. Katsar T.H. Lan Y.R. Lin R. Ming R.J. Wright (2000) ArticleTitleComparative genomics of plant chromosomes. Plant Cell 12 1523–1539 Occurrence Handle10.1105/tpc.12.9.1523 Occurrence Handle1:CAS:528:DC%2BD3cXnsVylsbk%3D Occurrence Handle11006329

    Article  CAS  PubMed  Google Scholar 

  • A.H. Paterson Y. Saranga M. Menz C.X. Jiang R. Wright (2002) ArticleTitleQTL Analysis of genotype x environment interactions affecting cotton fiber quality Theor. Appl. Genet. 106 384–396 Occurrence Handle12589538

    PubMed  Google Scholar 

  • Y. Saranga I. Flash D. Yakir (1998) ArticleTitleVariation in water-use efficiency and its relation to carbon isotope ratio in cotton Crop Sci. 38 782–787 Occurrence Handle10.2135/cropsci1998.0011183X003800030027x

    Article  Google Scholar 

  • Y. Saranga M. Menz C.X. Jiang R.J. Wright D. Yakir A.H. Paterson (2001) ArticleTitleGenomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions Genome Res. 11 1988–1995 Occurrence Handle1:CAS:528:DC%2BD3MXovFOgt7w%3D Occurrence Handle11731488

    CAS  PubMed  Google Scholar 

  • T. Vision D.G. Brown S.D. Tanksley (2000) ArticleTitleThe origins of genomic duplications in Arabidopsis Science 290 2114–2117 Occurrence Handle1:CAS:528:DC%2BD3cXptVyisr0%3D Occurrence Handle11118139

    CAS  PubMed  Google Scholar 

  • J.F. Wendel (1989) ArticleTitleNew World tetraploid cottons contain Old World cytoplasm Proc. Natl. Acad. Sci. USA 86 4132–4136 Occurrence Handle1:CAS:528:DyaL1MXkvFCjsrg%3D Occurrence Handle16594050

    CAS  PubMed  Google Scholar 

  • J. Wendel A. Schnabel T. Seelanan (1995) ArticleTitleBidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium) Proc. Natl. Acad. Sci. USA 92 280–284 Occurrence Handle1:CAS:528:DyaK2MXjtVens7o%3D Occurrence Handle7816833

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, A.H. Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123, 191–196 (2005). https://doi.org/10.1007/s10709-003-2742-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-003-2742-0

Keywords

Navigation