Skip to main content

Advertisement

Log in

A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoidesTausch. and related species

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The structural organization and evolution of two tandemly repeated families, Spelt1 and Spelt52, located in the subtelomeric regions of Aegilops speltoides chromosomes were studied. The Spelt1 family of sequences with a monomer length of 178 bp was characterized by cloning and sequence analysis of polymerase chain reaction (PCR) products. Members of the Spelt1 family revealed sequence similarities exceeding 95\%. This conservation has remained despite divergence of species in Aegilops section Sitopsis and after independent multiple amplification events in the genome of Ae. speltoides. Sequences representing the Spelt52 family were cloned, sequenced and compared with other sequences in databases. The Spelt52 repeat family contains monomers of two types, Spelt52.1 and Spelt52.2. The two monomers share a homologous stretch of 280 bp and have two regions without sequence similarity of 96 bp and 110 bp, respectively. PCR analysis was conducted to 15 lines in Ae. speltoidesTausch., Ae. longissimaSchw.&Mushc.,Ae. sharonensisEig.,Ae. bicornis(Forssk)Jaub.&Sp., andAe. searsii Feld.&Kis. using primers to the homologous and non- homologous regions of Spelt52 family. Intraspecies and interspecies differences in the occurrence and abundance of combinations of Spelt52.1 and Spelt52.2 monomers were detected. The use of primers to telomeric and subtelomeric repeats followed by Southern hybridization, cloning, and sequence analysis demonstrated that Spelt1 and Spelt52 are localized close to each other and to telomeric repeats. The efficiency of a PCR approach for the analysis of telomeric/subtelomeric junction regions of chromosomes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adonina, I.G., E.A. Salina, T.T. Efremova & T.A. Pshenich-nikova, 2004. The study of introgressive lines of Triticum aestivum x Aegilops speltoides by in situ and SSR analyses. Plant Breeding 123: 220–224.

    Google Scholar 

  • Anamthawat-Jonsson, K. & J.S. Heslop-Harrison, 1993. Isola-tion and characterization of genome-specific DNA sequences in Triticeae species. Mol. Gen. Genet. 240: 151–158.

    PubMed  Google Scholar 

  • Altschul, S. F., T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    PubMed  Google Scholar 

  • Ashikawa, I., N. Kurata, Y. Nagamura & Y. Minobe, 1994. Cloning and mapping of telomere-associated sequences from rice. DNA Res. 1: 67–76.

    PubMed  Google Scholar 

  • Bennet, M. D., 1982. Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implication of the order for genome evolution and phenotypic variation, in Genome Evolution, edited by G. A. Dover & R. B. Flavell. Academic Press, London.

    Google Scholar 

  • Blackburn, E. H., 1991. Structure and function of telomeres. Nature 350: 569–573.

    PubMed  Google Scholar 

  • Devos, K. M. & M. D. Gale, 1997. Comparative genetics in the grasses. Plant Mol. Biol. 35: 3–15.

    PubMed  Google Scholar 

  • Draper, J. & R. Scott, 1988. Isolation of nucleic acids from plant cell, pp. 236–276 in Plant genetic transformation and gene expression, edited by J. Draper, R. Scott & P. Armitage. Blackwell Scientific Publications, Oxford, London.

    Google Scholar 

  • Flavell, R. B., 1982. Amplification, deletion and rearrangement: major sources of variation during species divergence, in Genome Evolution, edited by G. A. Dover & R. B. Flavell. Academic Press, London.

    Google Scholar 

  • Ganal, M. W., N. L. V. Lapitan & S. D. Tanksley, 1991. Macro-structure of the tomato telomeres. The Plant Cell 3: 87–94.

    PubMed  Google Scholar 

  • Heslop-Harrison, J. S., 2000. Comparative genome organization in plants: from sequences and markers to chromatin and chromosome. The Plant Cell 12: 617–635.

    PubMed  Google Scholar 

  • Jones, J. D. G. & R. B. Flavell, 1982. The structure, amount and chromosomal localization of de ned repeated DNA sequences in species of the genus Secale. Chromosoma 86: 613–641.

    Google Scholar 

  • Kilian, A. & A. Kleinhofs, 1992. Cloning and mapping of telomere-associated sequences from Hordeum vulgare L. Mol. Gen. Genet. 235: 153–156.

    Google Scholar 

  • Nakajima, R., K. Noma, H. Ohtsubo & E. Ohtsubo, 1996. Identification and characterization of two tandem repeat sequences (TrsB and TrsC)and a retrotransposon (RIRE) as genome-general sequences in rice. Genes Genet. Syst. 71: 373–382.

    PubMed  Google Scholar 

  • Ohtsubo, H., M. Umeda & E. Ohtsubo, 1991. Organization of DNA sequences highly repeated in tandem in rice genomes. Jpn. J. Genet. 66: 241–254.

    PubMed  Google Scholar 

  • Ohtsubo, H., & E. Ohtsubo, 1994. Involvement of transposition in dispersion of tandem repeat sequences (TrsA)in rice genomes. Mol. Gen. Genet. 245: 449–455.

    PubMed  Google Scholar 

  • Ohmido, N., & K. Fukui, 1997. Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA)and the telomere sequence. Plant Mol. Biol. 35: 963–968.

    PubMed  Google Scholar 

  • Pestsova, E. G., N. P. Goncharov & E. A. Salina, 1998. Elimi-nation of a tandem repeat of telomeric heterochromatin during evolution of wheat. Theor. Appl. Genet. 97: 1380–1386.

    Google Scholar 

  • Richards, E. J. & F. M. Ausubel, 1988. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136.

    PubMed  Google Scholar 

  • Salina, E. A., E. G. Pestsova, I. G. Adonina & A. V. Vershinin, 1998. Identification of a new family of tandem repeats in Triticeae genomes. Euphytica 100: 231–237.

    Google Scholar 

  • Salina, E. A., I. G. Adonina, O. M. Numerova & M. Feldman, 2003. The organization and evolution of subtelo-meric repeats in diploid and polyploids wheat species, in Proceedings of the International Polyploidy Con-ference held in London, Great Britain, 27–30 April, edited by M. D. Bennett. Royal Botanic Garden Press, London.

    Google Scholar 

  • Uchida, W., S. Mistuning, R. Sugiyama & S. Kawano, 2002. Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet. Syst. 77: 63–67.

    PubMed  Google Scholar 

  • Vershinin, A. V., T. Schwarzacher & J. S. Heslop-Harrison, 1995. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosome. The Plant Cell 7: 1823–1833.

    PubMed  Google Scholar 

  • Wu, K.-S. & S. D. Tanksley, 1993. Genetic and physical mapping of telomeres and microsatellites of rice. Plant Mol. Biol. 22: 861–872.

    PubMed  Google Scholar 

  • Zhang, P., B. Friebe & B. S. Gill, 2002. Variation in the distribution of a genome-specific DNA sequences on chromosomes reveals evolutionary relations in the Triticum and Aegilops complex. Plant Syst. Evol. 235: 169–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salina, E.A., Adonina, I.G., Vatolina, T.Y. et al. A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoidesTausch. and related species. Genetica 122, 227–237 (2004). https://doi.org/10.1007/s10709-004-5602-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-004-5602-7

Navigation