Skip to main content
Log in

Interbands behave as decompacted autonomous units in Drosophila melanogaster polytene chromosomes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We studied whether interbands can be ectopically formed in Drosophila melanogaster polytene chromosomes. For comparative purposes, two types of P-element constructs were used. The first type was represented by P-element based insertions into compact bands. Sequences of these insertions or adjacent genomic sequences could be activated ectopically either by GAL4 or by dosage compensation machinery. In the second type, the DNA from transcriptionally silent interbands was positioned between the FRT sites, and was flanked by DNA sequences of genes that were also inactive in salivary glands. Electron microscopy analysis of salivary gland polytene chromosomes demonstrated that both types of constructs formed distinct, yet morphologically similar interbands. Notably, the second class of transposon insertions appeared in polytene chromosomes as two bands separated by one interband. Excision of interband material from such insertions resulted in fusion of newly appeared bands into a single band. We were able to confirm by molecular means that the DNA sequences in integrated constructs were intact, that chromatin organization of this DNA mimicked that of native interbands, and that it was accurately excised from the constructs by FLP. Thus, we demonstrate that transfer of interband DNA into a silent genetic environment does not compromise interband formation. Our results do not support the idea of the existence of distinct cytogenetic “band + interband” units, furthermore, they suggest the autonomy of the decompacted state of interbands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beermann W (1972) Chromomeres and genes. In: Beermann W (ed) Results and problems in cell differentiation, vol. 4. Springer, Berlin, Heidelberg, New York, pp 1–33

    Google Scholar 

  • Brennecke J, Hipfner DR Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  • Cherbas L, Hu X, Zhimulev I, Belyaeva E, Cherbas P (2003) EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130(2):271–284

    Article  PubMed  CAS  Google Scholar 

  • Clark RF, Wagner CR, Craig CA, Elgin RSC (1991) Distribution of chromosomal proteins in polytene chromosomes of Drosophila. Methods Cell Biol 35:203–227

    PubMed  CAS  Google Scholar 

  • Crick F (1971) General model for chromosomes of higher organisms. Nature 234:25–27

    Article  PubMed  CAS  Google Scholar 

  • Demakov S, Gortchakov A, Schwartz Y, Semeshin V, Campuzano S, Modolell J, Zhimulev I (2004) Molecular and genetic organization of Drosophila melanogaster polytene chromosomes: evidence for two types of interband regions. Genetica 122:311–324

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Zhang W, Bao X, Martin JN, Girton J, Johansen J, Johansen KM (2005) The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma 114(3):173–182

    Article  PubMed  CAS  Google Scholar 

  • Eggert H, Gortchakov A, Saumweber H (2004) Identification of the Drosophila interband-specific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure. J Cell Sci 117:4253–4264

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–83

    Article  PubMed  CAS  Google Scholar 

  • Georgiev PG, Muravyova EE, Golovnin AK, Gracheva EM, Belenkaya TYu (2000) Insulators and long-distance interaction between regulatory elements in higher eukaryotes. Genetika 36:1588–1597 (in Russian)

    PubMed  CAS  Google Scholar 

  • Gilbert MK, Tan YY, Hart CM (2006) The Drosophila boundary element-associated factors BEAF-32A and BEAF-32B affect chromatin structure. Genetics 173:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Golic MM, Rong YS, Peteresen RB, Lindquist SL, Golic KG (1997) FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res 25:3665–3671

    Article  PubMed  CAS  Google Scholar 

  • Gortchakov AA, Demakov SA, Schwartz YuB (2003) Construction of pFRT, a convenient Drosophila transformation vector with the functional FRT sites. Mol Biol 37(5):695–698 (in Russian)

    Article  CAS  Google Scholar 

  • Gortchakov AA, Eggert H, Gan M, Mattow J, Zhimulev IF, Saumweber H (2005) Chriz, a chromodomain protein specific for the interbands of Drosophila melanogaster polytene chromosomes. Chromosoma 114:54–66

    Article  PubMed  CAS  Google Scholar 

  • Hart CM, Zhao K, Laemmli UK (1997) The scs’ boundary element: characterization of boundary element-associated factors. Mol Cell Biol 17(2):999–1009

    PubMed  CAS  Google Scholar 

  • Jamrich M, Haars R, Wulf E, Bautz FA (1977) Correlation of RNA polymerase B and transcriptional activity in the chromosomes of Drosophila melanogaster. Chromosoma 64:319–326

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kaplan CD, Morris JR, Wu C, Winston F (2000) Spt5 and Apt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev 14(20):2623–2634

    Article  CAS  Google Scholar 

  • Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Kuroda MI (2003) The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex. Genetics 164:565–574

    PubMed  CAS  Google Scholar 

  • Kozlova T, Zhimulev IF, Kafatos FC (1997) Molecular organization of an individual Drosophila polytene chromosome chromomere: transcribed sequences in the 10A1-2 band. Mol Gen Genet 257:55–61

    Article  PubMed  CAS  Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, San Diego, California

    Google Scholar 

  • Lis JT, Mason P, Peng J, Price DH, Werner J (2000) P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14:792–803

    PubMed  CAS  Google Scholar 

  • O’Kane C, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127

    Article  PubMed  CAS  Google Scholar 

  • Paul J (1972) General theory of chromosomes structure and gene activation in eukaryotes. Nature 238:444–446

    Article  PubMed  CAS  Google Scholar 

  • Raisin S, Pantalacci S, Breittmayer JP, Leopold P (2003) A new genetic locus controlling growth and proliferation in Drosophila melanogaster. Genetics 164:1015–1025

    PubMed  CAS  Google Scholar 

  • Ramos RGP, Grimwade BG, Wharton KA, Scottgale TN, Artavanis-Tsakonas S (1989) Physical and functional definition of the Drosophila Notch locus by P element transformation. Genetics 123:337–348

    PubMed  CAS  Google Scholar 

  • Rath U, Ding Y, Deng H, Qi H, Bao X, Zhang W, Girton J, Johansen J, Johansen KM. (2006) The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes. J Cell Sci 119:2332–2341

    Article  PubMed  CAS  Google Scholar 

  • Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  PubMed  CAS  Google Scholar 

  • Rykowski MC, Parmelee SJ, Agard DA, Sedat JW (1988) Precise determination of molecular limits of polytene chromosome band: regulatory sequences for the Notch gene are in the interband. Cell 54:461–472

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2004) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sass H, Bautz EKF (1982) Immunoelectron microscopic localization of RNA polymerase B on isolated polytene chromosomes of Chironomus tetans. Chromosoma 85:633–642

    Article  PubMed  CAS  Google Scholar 

  • Schwartz YuB, Demakov SA, Zhimulev IF (1998) Cloning and analysis of DNA from 85D9/D10 and 86B4/B6 interband region. Genetika 34:905–913 (in Russian)

    Google Scholar 

  • Schwartz YuB, Ioudinkova ES, Demakov SA, Razin SV, Zhimulev IF (1999) Interbands of Drosophila melanogaster polytene chromosomes contain matrix association regions. J Cell Biochem 72:368–372

    Article  Google Scholar 

  • Schwartz YuB, Demakov SA, Zhimulev IF (2001) Polytene chromosome interband DNA is organized into nucleosomes. Mol Genet Genom 265:311–315

    Article  Google Scholar 

  • Shaffer CD, Wuller JM, Elgin SCR (1994) Preparation of Drosophila nuclei. Methods Cell Biol 44:185–189

    PubMed  CAS  Google Scholar 

  • Semeshin VF, Zhimulev IF, Belyaeva ES (1979) Electron microscope autoradiographic study of transcriptional activity of Drosophila melanogaster polytene chromosomes. Chromosoma 73:163–177

    Article  CAS  Google Scholar 

  • Semeshin VF, Belyaeva ES, Zhimulev IF, Lis JT, Richards G, Bourouis M (1986) Electron microscopical analysis of Drosophila polytene chromosomes. IV. Mapping of morphological structures appearing as a result of transformation of DNA sequences into chromosomes. Chromosoma 93:461–468

    Article  CAS  Google Scholar 

  • Semeshin VF, Demakov SA, Perez Alonso M, Belyaeva ES, Bonner JJ, Zhimulev IF (1989) Electron microscopical analysis of Drosophila polytene chromosomes. V. Characteristics of structures formed by transposed DNA segments of mobile elements. Chromosoma 97:396–412

    Article  PubMed  CAS  Google Scholar 

  • Semeshin VF, Belyaeva ES, Zhimulev IF (2001) Electron microscope mapping of pericentric and intercalary heterochromatic regions of the polytene chromosomes of the mutant Supressor of underreplication in Drosophila melanogaster. Chromosoma 110:487–500

    Article  PubMed  CAS  Google Scholar 

  • Semeshin VF, Belyaeva ES, Shloma VV, Zhimulev IF (2004) Electron microscopy of polytene chromosomes. Methods Mol Biol 247:305–324

    PubMed  Google Scholar 

  • Sorsa V (1984) Electron microscopic mapping and ultrastructure of Drosophila polytene chromosomes. In: King RC, Akai H (eds) Insect ultrastructure, vol. 2. Plenum Press, New York, pp 75–107

    Google Scholar 

  • Udvardy A (1999) Dividing the empire: boundary chromatin elements delimit the territory of enhancers. EMBO J 18(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Vazquez J, Schedl P (2000) Deletion of an insulator element by the mutation facet-strawberry in Drosophila melanogaster. Genetics 155:1297–1311

    PubMed  CAS  Google Scholar 

  • Vlassova IE, Umbetova GH, Zimmermann VH, Alonso C, Belyaeva ES, Zhimulev IF (1985) Immunofluorescence localization of DNA:RNA hybrids in Drosophila melanogaster polytene chromosomes. Chromosoma 91:251–258

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zheng W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Hart CM, Laemmli UK (1995) Visualization of chromosomal domains with Boundary Element Associated Factor BEAF-32. Cell 81:879–889

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF (1996) Morphology and structure of polytene chromosomes. Adv Genet 34:1–490

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF (1999) Genetic organization of polytene chromosomes. Adv Genet 39:1–589

    PubMed  CAS  Google Scholar 

  • Zhimulev IF, Belyaeva ES (1975) Proposals to the problem of structural and functional organization of polytene chromosomes. Theor Appl Genet 45:335–340

    Google Scholar 

  • Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova 0V, Pokholkova GV, Andreyeva EN (2004) Polytene chromosomes: 70 years of genetic research. Int Rev Cytol 241:203–275

    Article  PubMed  CAS  Google Scholar 

  • Zimin PI, Gortchakov AA, Demakov SA, Zhimulev IF (2004) A new construct for cloning DNA and modeling the structure of Drosophila melanogaster polytene chromosomes. Mol Biol 38(2):250–255 (in Russian)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mitzi Kuroda, Lucy Cherbas and Ekaterina Savitskaya for providing us with fly stocks. This work was supported by the Russian Foundation for Basic Research, grant NN 06-04-48387 and 06-04-49305-a; the program Leading Scientific Schools, grant no. 942.2006.4, and Molecular and Cellular Biology program no 10.1 from RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor F. Zhimulev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semeshin, V.F., Demakov, S.A., Shloma, V.V. et al. Interbands behave as decompacted autonomous units in Drosophila melanogaster polytene chromosomes. Genetica 132, 267–279 (2008). https://doi.org/10.1007/s10709-007-9170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9170-5

Keywords

Navigation