Skip to main content

Advertisement

Log in

The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In this study, we investigated the genetic diversity of a collection of 136 Medicago truncatula lines from 10 Tunisian natural populations collected in well-defined locations and in various ecological conditions of soil, salinity and water availability. The genetic diversity was evaluated using a set of 18 microsatellites (SSRs), representing the 8 chromosomes of M. truncatula. A neutrality test showed that 7 SSRs were non-neutral with evidence of balancing selection. The 11 neutral SSRs revealed a geographical pooling with the Tunisian Dorsale axis restricting migration of alleles. The 7 non-neutral alleles demonstrate a correlation with rainfall, altitude and salinity environmental variables suggesting that these SSRs are linked to genes involved in water use efficiency, resistance to salinity or adaptation to altitude, and that there is local adaptation of M. truncatula to these variables. This demonstrates that the choice of so-called neutral markers should be carefully evaluated in population genetic studies. This study illustrates the genetic diversity occurring in natural Tunisian populations of M. truncatula and describes the first collection of this species dedicated to natural variation involved in adaptation to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ane JM, Levy J, Thoquet P, Kulikova O, de Billy F, Penmetsa V et al (2002) Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Mol Plant Microbe Interact 15:1108–1118. doi:10.1094/MPMI.2002.15.11.1108

    Article  PubMed  CAS  Google Scholar 

  • Baatout H, Marrakchi M, Combes D (1991) Genetic divergence and Allozyme variation within and among populations of Hedysarum spinosissimum subsp. Capitatum and subsp. Spinosissimum (Papillonaceae). Taxon 40(2):239. doi:10.2307/1222978

    Article  Google Scholar 

  • Baquerizo-Audiot E, Desplanque B, Prospéri J-M, Santoni S (2001) Characterization of microsatellite loci in the diploid legume Medicago truncatula (barrel medic). Mol Ecol Notes 1:1–3. doi:10.1046/j.1471-8278.2000.00001.x

    Article  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1999) GENETIX 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  • Bonnin I, Ronfort J, Wozniak F, Olivieri I (2001) Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae). Mol Ecol 10:1371–1383. doi:10.1046/j.1365-294X.2001.01278.x

    Article  PubMed  CAS  Google Scholar 

  • Brunel D, Froger N, Pelletier G (1999) Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42:387–402. doi:10.1139/gen-42-3-387

    Article  PubMed  CAS  Google Scholar 

  • Chen C (2006) TESS reference manual. Grenoble: Institut d’Informatique et Mathématiques Appliquées de Grenoble. http://timc.imag.fr/Olivier.Francois/tess.html

  • Diwan N, Bhagwat AA, Bauchan GR, Cregan PB (1997) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome 40:887–895. doi:10.1139/g97-115

    Article  PubMed  CAS  Google Scholar 

  • Donini P, Law JR, Koebner RM, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:918. doi:10.1007/s001220051370

    Article  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262. doi:10.1038/24376

    Article  CAS  Google Scholar 

  • Ellwood SR, D’ Souza NK, Kamphuis LG, Burgess TI, Nair RM, Oliver RP (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theor Appl Genet 112:977–983. doi:10.1007/s00122-005-0202-1

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy JC, Zwonitzer JC, Mian MA (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422. doi:10.1007/s00122-003-1450-6

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. doi:10.1093/jxb/erh003

    Article  PubMed  CAS  Google Scholar 

  • Foll M, Gagiotti O (2006) Indentifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891. doi:10.1534/genetics.106.059451

    Article  PubMed  CAS  Google Scholar 

  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816. doi:10.1534/genetics.106.059923

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Schaal BA, Jia J, Dong Y (2003) Assessment of population genetic structure in common wild rice Oryza rufipogon Griff. Using microsatellite and allozyme markers. Theor Appl Genet 106:173

    Google Scholar 

  • Gherardi M, Mangin B, Goffinet B, Bonnet D, Huguet T (1998) A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers. Theor Appl Genet 96:406–412. doi:10.1007/s001220050756

    Article  CAS  Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T et al (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9. doi:10.1186/1471-2229-3-9

    Article  PubMed  Google Scholar 

  • May GD, Dixon RA (2004) Medicago truncatula. Curr Biol 14:R180–R181. doi:10.1016/j.cub.2004.02.013

    Article  PubMed  CAS  Google Scholar 

  • Nei TM (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

    Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P et al (1998) A microsatellite map of wheat. Genetics 149:2007

    PubMed  CAS  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David J, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collections for studying naturally occuring variation in Medicago truncatula. BMC Plant Biol 6:28. doi:10.1186/1471-2229-6-28

    Article  PubMed  CAS  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920. doi:10.1007/s00122-003-1502-y

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva, Switzerland

  • Slatkin M (1994) An exact test for neutrality based on the Ewens sampling distribution. Genet Res 64:71–74

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1996) A correction to the exact test based on the Ewens sampling distribution. Genet Res 68:259–260

    PubMed  CAS  Google Scholar 

  • Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM, Prosperi JM et al (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1. doi:10.1186/1471-2229-2-1

    Article  PubMed  Google Scholar 

  • Timothy FS, Bernhard H, Thomas M-O (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol Notes 9:2109–2118

    Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S et al (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655. doi:10.1073/pnas.112324299

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC et al (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630. doi:10.1534/genetics.104.032086

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1977) Heterosis or neutrality? Genetics 85:789–814

    PubMed  CAS  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD et al (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181. doi:10.1104/pp. 104.057034

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621. doi:10.1104/pp.104.040295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by French-Tunisian cooperation (CMCU 00F0909, PICS 712) and by European Union (FP6 Integrated Project “Grain Legumes”). F.L. was recipient of a PED grant thesis by CNRS. F.C. was supported by a grant from the FP6 European Integrated Project “Grain Legumes”. The authors thank Dr. S. Santoni (INRA, Montpellier, France) for his generous gift of SSRs markers. We thank an anonymous reviewer for his/her precious advices to improve the manuscript. We thank M. Friesen (UC Davis, USA) for reading the manuscript before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Huguet.

Additional information

F. Lazrek and V. Roussel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazrek, F., Roussel, V., Ronfort, J. et al. The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135, 391–402 (2009). https://doi.org/10.1007/s10709-008-9285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9285-3

Keywords

Navigation