Skip to main content

Advertisement

Log in

Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel

  • Published:
Genetica Aims and scope Submit manuscript

An Erratum to this article was published on 04 July 2009

Abstract

The spread of drug resistance through malaria parasite populations calls for the development of new therapeutic strategies. However, the seemingly promising genomics-driven target identification paradigm is hampered by the weak annotation coverage. To identify potentially important yet uncharacterized proteins, we apply support vector machines using profile kernels, a supervised discriminative machine learning technique for remote homology detection, as a complement to the traditional alignment based algorithms. In this study, we focus on the prediction of proteases, which have long been considered attractive drug targets because of their indispensable roles in parasite development and infection. Our analysis demonstrates that an abundant and complex repertoire is conserved in five Plasmodium parasite species. Several putative proteases may be important components in networks that mediate cellular processes, including hemoglobin digestion, invasion, trafficking, cell cycle fate, and signal transduction. This catalog of proteases provides a short list of targets for functional characterization and rational inhibitor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

ER:

Endoplasmic reticulum

PF-SVM:

Support vector machine using profile kernels

ORF:

Open reading frame

RIP:

Regulated intramembrane proteolysis

SBDD:

Structured based drug design

SERA:

Serine-repeat antigen

SPP:

Signal peptide peptidase

SVM:

Support vector machine

References

  • Aly AS, Matuschewski K (2005) A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J Exp Med 202:225–230. doi:10.1084/jem.20050545

    Article  PubMed  CAS  Google Scholar 

  • Arisue N, Hirai M, Arai M, Matsuoka H, Horii T (2007) Phylogeny and evolution of the SERA multigene family in the genus Plasmodium. J Mol Evol 65:82–91. doi:10.1007/s00239-006-0253-1

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed  CAS  Google Scholar 

  • Baker RP, Wijetilaka R, Urban S (2006) Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog 2:e113. doi:10.1371/journal.ppat.0020113

    Article  PubMed  Google Scholar 

  • Barale JC, Blisnick T, Fujioka H, Alzari PM, Aikawa M, Braun-Breton C, Langsley G (1999) Plasmodium falciparum subtilisin-like protease 2, a merozoite candidate for the merozoite surface protein 1–42 maturase. Proc Natl Acad Sci USA 96:6445–6450. doi:10.1073/pnas.96.11.6445

    Article  PubMed  CAS  Google Scholar 

  • Blackman MJ, Fujioka H, Stafford WH, Sajid M, Clough B, Fleck SL, Aikawa M, Grainger M, Hackett F (1998) A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites. J Biol Chem 273:23398–23409. doi:10.1074/jbc.273.36.23398

    Article  PubMed  CAS  Google Scholar 

  • Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003a) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5. doi:10.1371/journal.pbio.0000005

    Article  PubMed  Google Scholar 

  • Bozdech Z, Zhu J, Joachimiak MP, Cohen FE, Pulliam B, DeRisi JL (2003b) Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol 4:R9. doi:10.1186/gb-2003-4-2-r9

    Article  PubMed  Google Scholar 

  • Brossier F, Jewett TJ, Sibley LD, Urban S (2005) A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci USA 102:4146–4151. doi:10.1073/pnas.0407918102

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398. doi:10.1016/S0092-8674(00)80675-3

    Article  PubMed  CAS  Google Scholar 

  • Carlton J (2003) The Plasmodium vivax genome sequencing project. Trends Parasitol 19:227–231. doi:10.1016/S1471-4922(03)00066-7

    Article  PubMed  CAS  Google Scholar 

  • Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, Van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512–519. doi:10.1038/nature01099

    Article  PubMed  CAS  Google Scholar 

  • Carroll CD, Patel H, Johnson TO, Guo T, Orlowski M, He ZM, Cavallaro CL, Guo J, Oksman A, Gluzman IY, Connelly J, Chelsky D, Goldberg DE, Dolle RE (1998) Identification of potent inhibitors of Plasmodium falciparum plasmepsin II from an encoded statine combinatorial library. Bioorg Med Chem Lett 8:2315–2320. doi:10.1016/S0960-894X(98)00419-3

    Article  PubMed  CAS  Google Scholar 

  • Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram JC (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 17:532–537. doi:10.1016/S1471-4922(01)02037-2

    Article  PubMed  CAS  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge

    Google Scholar 

  • Dowse TJ, Pascall JC, Brown KD, Soldati D (2005) Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35:747–756. doi:10.1016/j.ijpara.2005.04.001

    Article  PubMed  CAS  Google Scholar 

  • Eggleson KK, Duffin KL, Goldberg DE (1999) Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem 274:32411–32417. doi:10.1074/jbc.274.45.32411

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK Jr, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286. doi:10.1371/journal.pbio.0040286

    Article  PubMed  Google Scholar 

  • Ersmark K, Samuelsson B, Hallberg A (2006) Plasmepsins as potential targets for new antimalarial therapy. Med Res Rev 26:626–666. doi:10.1002/med.20082

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi:10.1007/BF01734359

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288. doi:10.1093/nar/gkm960

    Article  PubMed  CAS  Google Scholar 

  • Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu YM, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526. doi:10.1038/nature01107

    Article  PubMed  CAS  Google Scholar 

  • Florens L, Liu X, Wang YF, Yang SG, Schwartz O, Peglar M, Carucci DJ, Yates JR, Wu YM (2004) Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasitol 135:1–11. doi:10.1016/j.molbiopara.2003.12.007

    Article  PubMed  CAS  Google Scholar 

  • Gantt SM, Myung JM, Briones MRS, Li WD, Corey EJ, Omura S, Nussenzweig V, Sinnis P (1998) Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Chemother 42:2731–2738

    PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511. doi:10.1038/nature01097

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DE (2005) Hemoglobin degradation. Curr Top Microbiol Immunol 295:275–291. doi:10.1007/3-540-29088-5_11

    Article  PubMed  CAS  Google Scholar 

  • Gruszynski AE, DeMaster A, Hooper NM, Bangs JD (2003) Surface coat remodeling during differentiation of Trypanosoma brucei. J Biol Chem 278:24665–24672. doi:10.1074/jbc.M301497200

    Article  PubMed  CAS  Google Scholar 

  • Hackett F, Sajid M, Withers-Martinez C, Grainger M, Blackman MJ (1999) PfSUB-2: a second subtilisin-like protein in Plasmodium falciparum merozoites. Mol Biochem Parasitol 103:183–195. doi:10.1016/S0166-6851(99)00122-X

    Article  PubMed  CAS  Google Scholar 

  • Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JRIII, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307:82–86. doi:10.1126/science.1103717

    Article  PubMed  CAS  Google Scholar 

  • Haque TS, Skillman AG, Lee CE, Habashita H, Gluzman IY, Ewing TJ, Goldberg DE, Kuntz ID, Ellman JA (1999) Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J Med Chem 42:1428–1440. doi:10.1021/jm980641t

    Article  PubMed  CAS  Google Scholar 

  • Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781–27788. doi:10.1074/jbc.M211311200

    Article  PubMed  CAS  Google Scholar 

  • Hodder AN, Drew DR, Epa VC, Delorenzi M, Bourgon R, Miller SK, Moritz RL, Frecklington DF, Simpson RJ, Speed TP, Pike RN, Crabb BS (2003) Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 278:48169–48177. doi:10.1074/jbc.M306755200

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2004) Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3:1440–1450

    PubMed  CAS  Google Scholar 

  • Jaakkola T, Diekhans M, Haussler D (2000) A discriminative framework for detecting remote protein homologies. J Comput Biol 7:95–114. doi:10.1089/10665270050081405

    Article  PubMed  CAS  Google Scholar 

  • Jean L, Long M, Young J, Pery P, Tomley F (2001) Aspartyl proteinase genes from apicomplexan parasites: evidence for evolution of the gene structure. Trends Parasitol 17:491–498. doi:10.1016/S1471-4922(01)02030-X

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856. doi:10.1093/bioinformatics/14.10.846

    Article  PubMed  CAS  Google Scholar 

  • Kasam V, Zimmermann M, Maass A, Schwichtenberg H, Wolf A, Jacq N, Breton V, Hofmann-Apitius M (2007) Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid. J Chem Inf Model 47:1818–1828. doi:10.1021/ci600451t

    Article  PubMed  CAS  Google Scholar 

  • Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15:753–763

    PubMed  CAS  Google Scholar 

  • Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C (2005) Profile-based string kernels for remote homology detection and motif extraction. J Bioinform Comput Biol 3:527–550. doi:10.1142/S021972000500120X

    Article  PubMed  CAS  Google Scholar 

  • LaCount DJ, Gruszynski AE, Grandgenett PM, Bangs JD, Donelson JE (2003) Expression and function of the Trypanosoma brucei major surface protease (GP63) genes. J Biol Chem 278:24658–24664. doi:10.1074/jbc.M301451200

    Article  PubMed  CAS  Google Scholar 

  • Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, Mann M (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537–542. doi:10.1038/nature01111

    Article  PubMed  CAS  Google Scholar 

  • Le Chat L, Sinden RE, Dessens JT (2007) The role of metacaspase 1 in Plasmodium berghei development and apoptosis. Mol Biochem Parasitol 153:41–47. doi:10.1016/j.molbiopara.2007.01.016

    Article  PubMed  Google Scholar 

  • Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508. doi:10.1126/science.1087025

    Article  PubMed  Google Scholar 

  • Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JRIII, Winzeler EA (2004) Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res 14:2308–2318. doi:10.1101/gr.2523904

    Article  PubMed  Google Scholar 

  • Leslie CS, Eskin E, Cohen A, Weston J, Noble WS (2004) Mismatch string kernels for discriminative protein classification. Bioinformatics 20:467–476. doi:10.1093/bioinformatics/btg431

    Article  PubMed  CAS  Google Scholar 

  • Li R, Chen X, Gong B, Selzer PM, Li Z, Davidson E, Kurzban G, Miller RE, Nuzum EO, McKerrow JH, Fletterick RJ, Gillmor SA, Craik CS, Kuntz ID, Cohen FE, Kenyon GL (1996) Structure-based design of parasitic protease inhibitors. Bioorg Med Chem 4:1421–1427. doi:10.1016/0968-0896(96)00136-8

    Article  PubMed  CAS  Google Scholar 

  • Liao L, Noble WS (2003) Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J Comput Biol 10:857–868. doi:10.1089/106652703322756113

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herian M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917. doi:10.1016/S1097-2765(02)00501-4

    Article  PubMed  CAS  Google Scholar 

  • Malhotra P, Dasaradhi PV, Kumar A, Mohmmed A, Agrawal N, Bhatnagar RK, Chauhan VS (2002) Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and -2) of Plasmodium falciparum. Mol Microbiol 45:1245–1254. doi:10.1046/j.1365-2958.2002.03105.x

    Article  PubMed  CAS  Google Scholar 

  • McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN, Speed TP, de Koning-Ward TF, Crabb BS (2007) Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun 75:5565–5574. doi:10.1128/IAI.00405-07

    Article  PubMed  CAS  Google Scholar 

  • McQuibban GA, Saurya S, Freeman M (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423:537–541. doi:10.1038/nature01633

    Article  PubMed  CAS  Google Scholar 

  • Meslin B, Barnadas C, Boni V, Latour C, De Monbrison F, Kaiser K, Picot S (2007) Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. J Infect Dis 195:1852–1859. doi:10.1086/518253

    Article  PubMed  CAS  Google Scholar 

  • Mohmmed A, Dasaradhi PV, Bhatnagar RK, Chauhan VS, Malhotra P (2003) In vivo gene silencing in Plasmodium berghei—a mouse malaria model. Biochem Biophys Res Commun 309:506–511. doi:10.1016/j.bbrc.2003.08.027

    Article  PubMed  CAS  Google Scholar 

  • Murata CE, Goldberg DE (2003a) Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. J Biol Chem 278:38022–38028. doi:10.1074/jbc.M306842200

    Article  PubMed  CAS  Google Scholar 

  • Murata CE, Goldberg DE (2003b) Plasmodium falciparum falcilysin: an unprocessed food vacuole enzyme. Mol Biochem Parasitol 129:123–126. doi:10.1016/S0166-6851(03)00098-7

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi:10.1006/jmbi.2000.4042

    Article  PubMed  CAS  Google Scholar 

  • Nyborg AC, Ladd TB, Jansen K, Kukar T, Golde TE (2006) Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. FASEB J 20:1671–1679. doi:10.1096/fj.06-5762com

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell RA, Hackett F, Howell SA, Treeck M, Struck N, Krnajski Z, Withers-Martinez C, Gilberger TW, Blackman MJ (2006) Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174:1023–1033. doi:10.1083/jcb.200604136

    Article  PubMed  Google Scholar 

  • Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ (2006) Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog 2:e117. doi:10.1371/journal.ppat.0020117

    Article  PubMed  Google Scholar 

  • Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, Goldberg DE (2007) A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol Microbiol 63:314–334. doi:10.1111/j.1365-2958.2006.05443.x

    Article  PubMed  CAS  Google Scholar 

  • Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750. doi:10.1021/cr010182v

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, Gutierrez-Fernandez A, Ordonez GR, Hillier LW, Lopez-Otin C (2005) Comparative genomic analysis of human and chimpanzee proteases. Genomics 86:638–647. doi:10.1016/j.ygeno.2005.07.009

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy G, Gupta D, Mohmmed A, Chauhan VS (2007) Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol 152:139–148. doi:10.1016/j.molbiopara.2007.01.002

    Article  PubMed  CAS  Google Scholar 

  • Rangwala H, Karypis G (2005) Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 21:4239–4247. doi:10.1093/bioinformatics/bti687

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325. doi:10.1093/nar/gkm954

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal PJ (2002) Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Curr Opin Hematol 9:140–145. doi:10.1097/00062752-200203000-00010

    Article  PubMed  Google Scholar 

  • Rosenthal PJ (2004) Cysteine proteases of malaria parasites. Int J Parasitol 34:1489–1499. doi:10.1016/j.ijpara.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal PJ, Sijwali PS, Singh A, Shenai BR (2002) Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des 8:1659–1672. doi:10.2174/1381612023394197

    Article  PubMed  CAS  Google Scholar 

  • Scheidt KA, Roush WR, McKerrow JH, Selzer PM, Hansell E, Rosenthal PJ (1998) Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors. Bioorg Med Chem 6:2477–2494. doi:10.1016/S0968-0896(98)80022-9

    Article  PubMed  CAS  Google Scholar 

  • Sharma A (2007) Malarial protease inhibitors: potential new chemotherapeutic agents. Curr Opin Investig Drugs 8:642–652

    PubMed  CAS  Google Scholar 

  • Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275:29000–29010. doi:10.1074/jbc.M004459200

    Article  PubMed  CAS  Google Scholar 

  • Shenai BR, Semenov AV, Rosenthal PJ (2002) Stage-specific antimalarial activity of cysteine protease inhibitors. Biol Chem 383:843–847. doi:10.1515/BC.2002.089

    Article  PubMed  CAS  Google Scholar 

  • Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 101:4384–4389. doi:10.1073/pnas.0307720101

    Article  PubMed  CAS  Google Scholar 

  • Sijwali PS, Shenai BR, Gut J, Singh A, Rosenthal PJ (2001) Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J 360:481–489. doi:10.1042/0264-6021:3600481

    Article  PubMed  CAS  Google Scholar 

  • Sijwali PS, Koo J, Singh N, Rosenthal PJ (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 150:96–106. doi:10.1016/j.molbiopara.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  • Southan C (2001) A genomic perspective on human proteases. FEBS Lett 498:214–218. doi:10.1016/S0014-5793(01)02490-5

    Article  PubMed  CAS  Google Scholar 

  • Suthram S, Sittler T, Ideker T (2005) The Plasmodium protein network diverges from those of other eukaryotes. Nature 438:108–112. doi:10.1038/nature04135

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Urban S, Lee JR, Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107:173–182. doi:10.1016/S0092-8674(01)00525-6

    Article  PubMed  CAS  Google Scholar 

  • Urban S, Schlieper D, Freeman M (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12:1507–1512. doi:10.1016/S0960-9822(02)01092-8

    Article  PubMed  CAS  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Adaptive and learning systems for signal processing, communications, and control. Wiley, New York

    Google Scholar 

  • Wang Y, Wu Y (2004) Computer assisted searches for drug targets with emphasis on malarial proteases and their inhibitors. Curr Drug Targets Infect Disord 4:25–40. doi:10.2174/1568005043480952

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Ha Y (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444:179–180. doi:10.1038/nature05255

    Article  PubMed  CAS  Google Scholar 

  • Withers-Martinez C, Jean L, Blackman MJ (2004) Subtilisin-like proteases of the malaria parasite. Mol Microbiol 53:55–63. doi:10.1111/j.1365-2958.2004.04144.x

    Article  PubMed  CAS  Google Scholar 

  • Wu YM, Wang XY, Liu X, Wang YF (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616. doi:10.1101/gr.913403

    Article  PubMed  CAS  Google Scholar 

  • Yeoh S, O’Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman MJ (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131:1072–1083. doi:10.1016/j.cell.2007.10.049

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive comments. We thank PlasmoDB for providing an all-in-one portal for malaria genomic data. The project described is supported by grants 1SC1GM081068, 8SC1AI080579, and R21AI067543 from the National Institute of General Medical Sciences and National Institute of Allergy and Infectious Diseases to Y. Wang. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences, National Institute of Allergy and Infectious Diseases or the National Institutes of Health. YW is also supported by NIH grant G12RR013646, and San Antonio Area Foundation Biomedical Research Funds. RK is supported by Grant-in-Aid of Research, Artistry and Scholarship at University of Minnesota, and the Biomedical Informatics and Computational Biology Seed Grant for UM-Mayo-IBM Collaboration. JG is supported by PSC-CUNY 37 Research Award and Summer Research Award for faculty at College of Staten Island/CUNY.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Kuang or Yufeng Wang.

Additional information

Rui Kuang and Jianying Gu have contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10709-009-9383-x

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 46 kb)

(XLS 87 kb)

(XLS 87 kb)

(XLS 88 kb)

(XLS 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, R., Gu, J., Cai, H. et al. Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel. Genetica 136, 189–209 (2009). https://doi.org/10.1007/s10709-008-9336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9336-9

Keywords

Navigation