Skip to main content
Log in

Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

With tens of billions of dollars spent each year on the development of drugs to treat human diseases, and with fewer and fewer applications for investigational new drugs filed each year despite this massive spending, questions now abound on what changes to the drug discovery paradigm can be made to achieve greater success. The high rate of failure of drug candidates in clinical development, where the great majority of these drugs fail due to lack of efficacy, speak directly to the need for more innovative approaches to study the mechanisms of disease and drug discovery. Here we review systems biology approaches that have been devised over the last several years to understand the biology of disease at a more holistic level. By integrating a diversity of data like DNA variation, gene expression, protein–protein interaction, DNA–protein binding, and other types of molecular phenotype data, more comprehensive networks of genes both within and between tissues can be constructed to paint a more complete picture of the molecular processes underlying physiological states associated with disease. These more integrative, systems-level methods lead to networks that are demonstrably predictive, which in turn provides a deeper context within which single genes operate such as those identified from genome-wide association studies or those targeted for therapeutic intervention. The more comprehensive views of disease that result from these methods have the potential to dramatically enhance the way in which novel drug targets are identified and developed, ultimately increasing the probability of success for taking new drugs through clinical development. We highlight a number of the integrative approaches via examples that have resulted not only in the identification of novel genes for diabetes and cardiovascular disease, but in more comprehensive networks as well that describe the context in which the disease genes operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brem RB, Yvert G et al (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568):752–755

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh L, Weersing E et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37(3):225–232

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zhu J et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452(7186):429–435

    Article  PubMed  CAS  Google Scholar 

  • Chesler EJ, Lu L et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242

    Article  PubMed  CAS  Google Scholar 

  • Dixon AL, Liang L et al (2007) A genome-wide association study of global gene expression. Nat Genet 39(10):1202–1207

    Article  PubMed  CAS  Google Scholar 

  • Doss S, Schadt EE et al (2005) Cis-acting expression quantitative trait loci in mice. Genome Res 15(5):681–691

    Article  PubMed  CAS  Google Scholar 

  • Edwards AO, Ritter R 3rd et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  PubMed  CAS  Google Scholar 

  • Emilsson V, Thorleifsson G et al (2008) Genetics of gene expression and its effect on disease. Nature 452(7186):423–428

    Article  PubMed  CAS  Google Scholar 

  • Fellay J, Shianna KV et al (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317(5840):944–947

    Article  PubMed  CAS  Google Scholar 

  • Frayling TM, Timpson NJ et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Foat BC et al (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5:31

    Article  PubMed  Google Scholar 

  • Gargalovic PS, Imura M et al (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 103(34):12741–12746

    Article  PubMed  CAS  Google Scholar 

  • Gerken T, Girard CA et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472

    Article  PubMed  CAS  Google Scholar 

  • Ghazalpour A, Doss S et al (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2(8):e130

    Article  PubMed  Google Scholar 

  • Glymour CN (2001) The mind’s arrows: Bayes Nets and Graphical Causal Models in Psychology. Cambridge, Mass, Bradford Book

    Google Scholar 

  • Grant SF, Thorleifsson G et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323

    Article  PubMed  CAS  Google Scholar 

  • Haines JL, Hauser MA et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    Article  PubMed  CAS  Google Scholar 

  • Han JD, Bertin N et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  PubMed  CAS  Google Scholar 

  • Hartemink AJ, Gifford DK et al. (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput 7:437–449

    Google Scholar 

  • Helgadottir A, Thorleifsson G et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493

    Article  PubMed  CAS  Google Scholar 

  • Herbert A, Gerry NP et al (2006) A common genetic variant is associated with adult and childhood obesity. Science 312(5771):279–283

    Article  PubMed  CAS  Google Scholar 

  • Hindorff LA, Junkins HA et al. (2008) A catalog of published genome-wide association studies. Science 322(5901):881–888

    Google Scholar 

  • Hughes TR, Marton MJ et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320. doi:10.1038/nature04226

    Article  Google Scholar 

  • Jensen FV (1996) An introduction to Bayesian Networks. Springer, New York. ISBN 0387915028

    Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(3):1111–1127

    PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–D357

    Article  PubMed  CAS  Google Scholar 

  • Klein RJ, Zeiss C et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  PubMed  CAS  Google Scholar 

  • McPherson R, Pertsemlidis A et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830):1488–1491

    Article  PubMed  CAS  Google Scholar 

  • Moffatt MF, Kabesch M et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473

    Article  PubMed  CAS  Google Scholar 

  • Monks SA, Leonardson A et al (2004) Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 75(6):1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Morley M, Molony CM et al (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430(7001):743–747

    Article  PubMed  CAS  Google Scholar 

  • Ong IM, Glasner JD et al (2002) Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18(Suppl 1):S241–S248

    PubMed  Google Scholar 

  • Pan X, Ye P et al (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Peacock ML, Warren JT Jr et al (1993) Novel polymorphism in the A4 region of the amyloid precursor protein gene in a patient without Alzheimer’s disease. Neurology 43(6):1254–1256

    PubMed  CAS  Google Scholar 

  • Rabiner LR (1989) A tutorial on Hidden markov Models and selected applications in speech recognition. Proceedings of the 77th meeting of the institute of electrical and electronics engineers, San Diego, California, IEEE

  • Rual JF, Venkatesan K et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Sachs A et al (2005) Embracing complexity, inching closer to reality. Sci STKE 2005(295):pe40

    Article  PubMed  Google Scholar 

  • Schadt EE, Lum PY (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J Lipid Res 47(12):2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422(6929):297–302

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Lamb J et al (2005b) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37(7):710–717

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Molony C et al (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6(5):e107

    Article  PubMed  Google Scholar 

  • Segal E, Shapira M et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Article  PubMed  CAS  Google Scholar 

  • Sladek R, Rocheleau G et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885

    Article  PubMed  CAS  Google Scholar 

  • Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  PubMed  CAS  Google Scholar 

  • Todd JA, Walker NM et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447(7145):661–678. doi:10.1038/nature05911

    Article  Google Scholar 

  • Willer CJ, Sanna S et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40(2):161–169

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Lum PY et al (2004) An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet Genome Res 105(2–4):363–374

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Wiener MC et al (2007) Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol 3(4):e69

    Article  PubMed  Google Scholar 

  • Zhu J, Zhang B et al (2008) Integrating large-scale functional genomics data to dissect the complexity of yeast regulatory networks. Nat Genet 40(7):854–861

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric E. Schadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schadt, E.E., Zhang, B. & Zhu, J. Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments. Genetica 136, 259–269 (2009). https://doi.org/10.1007/s10709-009-9359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9359-x

Keywords

Navigation