Skip to main content

Advertisement

Log in

Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface

  • Review
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10–15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body.

Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alatamura C, VanGastel A, Pioli R, Mannu P, Maes M (1999) Seasonal and circadian rhythms in suicide in Cagliari, Italy. J Affect Disord 53:77–85

    Article  Google Scholar 

  • Arnoldy RL (1971) Signature in the interplanetary medium for substorms. J Geophys Res 76:5189–5201

    Google Scholar 

  • Balser M, Wagner CA (1960) Observations of Earth-ionosphere cavity resonances. Nature 188:638–641

    Article  Google Scholar 

  • Barr R, Jones DL, Rodger CJ (2000) ELF and VLF radio waves. J Atmos Sol-Terr Phys 62(17–18):1689–1718

    Article  Google Scholar 

  • Blackman CF, Benane SG, House DE, Elliott DJ (1990) Importance of alignment between local DC magnetic field and an oscillating magnetic field in responses of brain tissue in vitro and in vivo. Bioelectromagnetics 11(2):159–167

    Article  Google Scholar 

  • Brainard GC, Kavet R, Kheifets LI (1999) The relationship between electromagnetic field and light exposures to melatonin and breast cancer risk: a review of the relevant literature. J Pineal Res 26(2):65–100

    Google Scholar 

  • Breus TK, Komarov FI, Musin MM, Naborov IV, Rapaport SI (1989) Heliogeophysical factors and their influence on cyclical processes in biosphere (in Russian). Itogi Nauki I Techniki: Medicinskaya Geografica 18:138–142, 145, 147, 148, 172–174

  • BreusTK, Pimenov KY, Cornélissen G, Halberg E, Syutkina EV, Baevsky RM, Petrov VM, Orth-Gomer K, Akerstedt T, Otsuka K, Watanabe Y, Chibisov SM (2002) The biological effects of solar activity. Biomed Pharmacother 56(Suppl 2):273s–283s

    Article  Google Scholar 

  • Buffet BA (2000) Earth’s core and the geodynamo. Science 288:2007–2012

    Article  Google Scholar 

  • Burch JB, Reif JS, Yost MG (1999) Geomagnetic disturbances are associated with reduced nocturnal excretion of melatonin metabolite in humans. Neurosci Lett 266:209–212

    Article  Google Scholar 

  • Burch JB, Reif JS, Noonan CW, Ichinose T, Bachand AM, Koleber TL, Yost MG (2002) Melatonin metabolite excretion among cellular telephone users. Int J Radiat Biol 78(11):1029–1036

    Article  Google Scholar 

  • Cannon PS, Rycroft MJ (1982) Schumann resonance frequency variations during sudden ionospheric disturbances. J Atmos Terr Phys 44:201–206

    Article  Google Scholar 

  • Chernouss S, Vinogradov A, Vlassova E (2001) Geophysical hazard for Human health in the circumpolar Auroral Belt: evidence of a relationship between heart rate variation and electromagnetic disturbances. Nat Hazards 23:121–135

    Article  Google Scholar 

  • Cherry NJ (2002) Schumann Resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Nat Hazards 26(3):279–331

    Article  Google Scholar 

  • Chibisov SM, Breus TK, Levitin AE, Drogova GM (1995) Biological effects of planetary magnetic storms (in Russian). Biofizik 40(5): 959–968

    Google Scholar 

  • Chibisov SM, Breus TK, Illarionova TS, (2001) Morphological and functional state of the heart during magnetic storm. Bull Exp Biol Med 132(6):1150–1153

    Article  Google Scholar 

  • Cleary SF (1993) Biophysical mechanisms of interaction. In: Stone WR (ed) Review of radio science 1990–1992. Oxford University Press, pp 717 –735

  • Cook MR, Graham C, Cohen HD, Gerkovich MN (1992) A replication study of human exposure to 60-Hz fields: effects on neurobehavioral measures. Bioelectromagnetics 13:261–285

    Article  Google Scholar 

  • Cornélissen G, Halberg F, Breus T, Syutkina EV, Baevsky R, Weydahl A, Watanabe Y, Otsuka K, Siegelova J, Fiser B, Bakken EE (2002) Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol-Terr Phys 64:707–720

    Article  Google Scholar 

  • Cornélissen G, Halberg F (1994) Introduction to Chronobiology, Medtronic Chronobiology Seminar #7, April 1994, 52pp. (Library of Congress Catalogue Card #94–060580; URL http://www.msi.umn.edu/∼halberg/)

  • Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D (1984) Magnetic field of the Earth as additional zeitgeber for endogenous rhythms?. Naturwissenschaften 71:567–574

    Article  Google Scholar 

  • Crosby NB, Rycroft MJ, Tulunay Y (2006) Overview of a graduate course delivered in Turkey, emphasizing solar-terrestrial physics and space weather. Survey Geophys 27:319–364

    Article  Google Scholar 

  • Davydov BI, Tikhonchuk VS, Strzhizhovskiy AD (1996) Chapter 18: Nonionizing Radiation’. In Leach Huntoon CS, Antipov VV, Grigoriev AI (eds) Space biology & medicine, vol III Humans in Spaceflight Book 2: Effects of Other Spaceflight Factors, Joint US/Russian publication, AIAA, Nauka press, Moscow

  • Feinleib M, Rogot E, Sturrock PA (1975) Solar activity and mortality in the United States. Int J␣Epidemiol 4:227–229

    Google Scholar 

  • Feychting M, Schulgen G, Olsen JH, Ahlbom A (1995) Magnetic fields and childhood cancer—a pooled analysis of two Scandinavian studies. Eur J Cancer 31A(12):2035–2039

    Article  Google Scholar 

  • Gavryuseva E, Kroussanova N, Simonello R (2002) Human state in connection with helio and geospheric perturbations, Proc. “SOLSPA: the Second Solar Cycle and Space Weather Euroconference”, Vico Equense, Italy, 24–29 September 2001 (ESA SP-477, February 2002)

  • Ghione S, Mezzasalma L, Del Seppia C, Papi F (1998) Do geomagnetic disturbances of solar origin affect arterial blood pressure?. J Hum Hypertens 12(11):749–754

    Article  Google Scholar 

  • Gmitrov J, Gmitrova A (2004) Geomagnetic Field Effect on Cardiovascular Regulation. Bioelectromagnetics 25:92–101

    Article  Google Scholar 

  • Gnevyshev MN, Novikova KF (1972) The influence of solar activity on the earth’s biosphere: Part I. J Interdiscipl Cycle Res 3:99

    Google Scholar 

  • Gurfinkel’ IuI, Liubimov VV, Oraevskii VN, Parfenova LM, Iur’ev AS (1995) The effect of geomagnetic disturbances in capilliary blood flow in ischemic heart disease patients (in Russian). Biofizika 40(4):793–799

    Google Scholar 

  • Halberg F, Cornélissen G, Sampson M, Katinas G, Schwartzkopff O (1999) Seasons appreciations 1998. Neuroendocrinol Lett 20:31–43

    Google Scholar 

  • Halberg F, Cornélissen G, Panksepp J, Otsuka K, Johnson D (2005) Chronomics of autism and suicide. Biomed Pharmocother 59(Suppl 1):100–108

    Article  Google Scholar 

  • Hainsworth LB (1983) The effect of geophysical phenomena on human health. Speculat Sci Technol 6(5):439–444

    Google Scholar 

  • Hargreaves JK (1992) The solar-terrestrial environment. Cambridge University Press, 420 pp

  • Johnson CH (1999) Forty years of PRCs—what have we learned?. Chronobiol Int 16:711–743

    Article  Google Scholar 

  • Kay RW (1994) Geomagnetic storms: association with incidence of depression measured by hospital admission. Br J Psychiatry 164(3):403–409

    Google Scholar 

  • Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11:462–467

    Article  Google Scholar 

  • Kivelson MG, Russell CT (1995) Introduction to Space Physics. Cambridge University Press, 568 pp

  • Knox EG, Armstrong E, Lancashire R, Wall M, Haynes R (1979) Heart attacks and geomagnetic activity. Nature 281:564–565

    Article  Google Scholar 

  • König HL (1974) Behavioural changes in human subjects associated with ELF electric fields. In: Persinger MA (ed) ELF and VLF electromagnetic field effects. Publ. Plenum Press, New York

    Google Scholar 

  • Kristal-Boneh E, Raifel M, Froom P, Ribak J (1995) Heart rate variability in health and disease. Scan J Work Environ Health 21:85–95

    Google Scholar 

  • Lang KR (1999) Chapter 3: The Sun. In: Beatty JK, Collins Petersen C, Chaikin A (eds) The New Solar System, 4th edn. Cambridge University Press, 421 pp

  • Lipa BJ, Sturrock PA, Rogot E (1976) Search for correlation between geomagnetic disturbances and mortality. Nature 259:302–304

    Article  Google Scholar 

  • Lednev VV (1991) Possible mechanism for influence of weak magnetic fields on biosystems. Bioelectromagnetics 25:71–75

    Article  Google Scholar 

  • Malin SRC, Srivastava BJ (1979) Correlation between heart attacks and magnetic activity. Nature 277:646–648

    Article  Google Scholar 

  • McLauchlan KA (1989) Magnetokinetics, mechanistics and synthesis. Chem Brit, Sept:895–898

  • Messner T, Haggstrom I, Sandahl I, Lundberg V (2002) No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden. Int J Biometerol 46(2):90–94

    Article  Google Scholar 

  • Moller HJ (2003) Suicide, suicidality and suicide prevention in affective disorders. Acta Psychiatr Scand Suppl 418:73–80

    Article  Google Scholar 

  • O’Connor RP, Persinger MA (1997) Geophysical variables and behaviour: LXXXII. A strong association between sudden infant death syndrome and increments of global geomagnetic activity—possible support for the melatonin hypothesis. Percept Motor Skills 84(2):395–402

    Google Scholar 

  • Olcese J, Reuss S, Vollrath L (1985) Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333(2):382–384

    Article  Google Scholar 

  • Otsuka K, Cornélissen G, Halberg F (1997) Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clin Cardiol 20:631–638

    Article  Google Scholar 

  • Otsuka K, Cornélissen G, Weydahl A, Holmeslet B, Hansen TL, Shinagawa M, Kubo Y, Nishimura Y, Omori K, Yano S, Halberg F (2001). Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother 55(Suppl 1):51–56

    Google Scholar 

  • Partonen T, Haukka J, Viilo K, Hakko H, Pirkola S, Isometsa E, Lonnqvist J, Sarkioja T, Vaisanen E, Rasanen P (2004) Cyclic time patterns of death from suicide in northern Finland. J Affect Disorders 78:11–19

    Article  Google Scholar 

  • Phillips JB, Deutschlander ME (1997) Magnetoreception in terrestrial vertebrates: implications for possible mechanisms of EMF interaction with biological systems. In: Stevens R, Wilson BW, Anderson LE (eds) The melatonin hypothesis. Batelle Press, Columbus, pp 111–172

    Google Scholar 

  • Pirjola R, Viljanen A (2000) Space weather risk in power systems and pipelines. Phys Chem Earth: Part C 25(4):333–337

    Article  Google Scholar 

  • Polk C (1983) Natural and man-made noise in the Earth-ionosphere cavity at extremely low-frequencies Schumann resonances and man-made interference. Space Sci Rev 35:83

    Article  Google Scholar 

  • Reiter RJ (1994) Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer. Rev Environ Health 10(3–4):171–186

    Google Scholar 

  • Reiter RJ (2003) Melatonin: clinical relevance. Best Practice Res Clin Endocrinol Metab 17(2):273–285

    Article  Google Scholar 

  • Roldugin VC, Maltsev YP, Petrova GA, Vasiljev AN (2001) Decrease in the first Schumann resonance frequency during solar proton events. J Geophys Res–Space Phys 106(A9):18555–18562

    Article  Google Scholar 

  • Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol-Terr Phys 6(17–18): 1563–1576

    Article  Google Scholar 

  • Schlegel K, Füllekrug M (1999) Schumann resonance parameter changes during high energy particle precipitation. J Geophys Res 104(A5):10111

    Article  Google Scholar 

  • Schumann WO (1952) Uber de strahlundlosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschict und einer Ionospharenhulle umgeben ist. Z Naturforsch 7a:149

    Google Scholar 

  • Shumilov OI, Kasatkina EA, Enykeev AV, Chramov AV (2003) Study of geomagnetic activity influence on a fetal state using cardiotocography. Biophysics 48(2):355–360

    Google Scholar 

  • Sienkiewicz ZJ, Cridland NA, Kowalczuk CI, Saunders RD (1993) Biological effects of electromagnetic fields and radiation. In: Stone WR (ed) Review of radio science 1990–1992. Oxford University Press, pp 737–770

  • Sobel E, Davanipour Z, Sulkava R, Erkinjuntti T, Wikstrom J, Henderson VW, Buckwalter G, Bowman JD, Lee PJ (1995) Occupations with exposure to electromagnetic fields: a possible risk factor for Alzheimer’s disease. Am J Epidemiol 142(5):515–524

    Google Scholar 

  • Stevens RG, Davis S (1996) The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 104(Suppl 1):135–140

    Google Scholar 

  • Stoupel E, Martfel JN, Rotenberg Z (1994) Paroxysmal atrial fibrillation and stroke (cerebrovascular accidents) in males and females above and below age 65 on days of different geomagnetic activity levels. J Basic Clin Physiol Pharmocol 5(3–4):315–329

    Google Scholar 

  • Stoupel E, Abramson E, Sulkes J, Martfel J, Stein N, Handelman M, Shimshoni M, Zadka P, Gabbay U (1995) Relationship between suicide and myocardial infarction with regard to changing physical environmental conditions. Int J Biometerol 38(4):199–203

    Article  Google Scholar 

  • Tchizhevsky AL (1976) Zemnoe ekho solnechnykh bur (Terrestrial echo of Solar Storms) Moscow: Mysl

  • Tarquini B, Perfetto F, Tarquini R (1998) Melatonin and seasonal depression. Recenti Prog Med 89(7–8):395–403

    Google Scholar 

  • Ulmer W (2002) On the role of the interactions of ions with external magnetic fields in physiologic processes and their importance in chronobiology. In Vivo 16:32–36

    Google Scholar 

  • Van Allen JA, Bagenal F (1999) Chapter 4: planetary magnetospheres and the interplanetary medium. In: Beatty JK, Collins Petersen C, Chaikin A (eds) The new solar system, 4th edn. Cambridge University Press, 421 pp

  • Walleczek J (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signalling. FASEB J 6(13):3177–3185

    Google Scholar 

  • Warman GR, Tripp H, Warman VL, Arendt J (2003a) Acute exposure to circularly polarized 50-Hz magnetic fields of 200–300 μT does not affect the pattern of melatonin secretion in young men. J␣Clin Endocrin Metab 88(12):5668–5673

    Article  Google Scholar 

  • Warman VL, Dijk DJ, Warman GR, Arendt J, Skene DJ (2003b) Phase advancing human circadian rhythms with short wavelength light. Neurosci Lett 342:37–40

    Article  Google Scholar 

  • Watanabe Y, Cornélissen G, Halberg F, Otsuka K, Ohkawa SI (2001) Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed Pharmacother 55(Suppl 1):76–83

    Google Scholar 

  • Wetterberg L, Bratlid T, Knorring L, Eberhard G, Yuwiler A (1999) A multinational study of the relationships between nighttime urinary melatonin production, age, gender, body size, and latitude. Eur Arch Psychiatr Neurosci 249:256–262

    Article  Google Scholar 

  • Wever RA (1986) Characteristics of circadian rhythms in human functions. J Neural Transm Suppl 21:323–373

    Google Scholar 

  • Weydahl A, Sothern RB, Cornélissen G, Wetterburg L (2001) Geomagnetic activity influences the melatonin secretion at 70 degrees N. Biomed Pharmocother 55(Suppl 1):57–62

    Google Scholar 

  • Williams ER (1992) The Schumann resonance: a global tropical thermometer. Science 256:1184–1187

    Article  Google Scholar 

  • Wood AW, Armstrong SM, Sait ML, Devine L, Martin MJ (1998) Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J Pineal Res 25(2):116–127

    Google Scholar 

  • Yip PSF, Chao A, Ho TP (1998) A re-examinatipon of seasonal variation in suicides in Australia and New Zealand. J Affect Disord 47:141–150

    Article  Google Scholar 

  • Young HD (1962) Statistical treatment of experimental data. McGraw-Hill, 172 pp

  • Zhadin MN, Fesenko EE (1990) Ion cyclotron resonance in biomolecules Biomed Sci 1:245–250

    Google Scholar 

Download references

Acknowledgements

The authors thank the three referees for their careful evaluation of this paper and for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S.J., Rycroft, M.J. & Cermack, M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27, 557–595 (2006). https://doi.org/10.1007/s10712-006-9010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-006-9010-7

Keywords

Navigation