Skip to main content
Log in

Isolation of a native osteoblast matrix with a specific affinity for BMP2

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

During their commitment and differentiation toward the osteoblast lineage, mesenchymal stem cells secrete a unique extracellular matrix (ECM) that contains large quantities of glycosaminoglycans (GAGs). Proteoglycans (PGs) are major structural and functional components of the ECM and are composed of a core protein to which one or more glycosaminoglycan sugar chains (GAGs) attach. The association of BMP2, a member of the TGF-β super-family of growth factors, and a known heparin-binding protein, with GAGs has been implicated as playing a significant role in modulating the growth factor’s in vitro bioactivity. Here we have characterised an osteoblast-derived matrix (MX) obtained from decellularised MC3T3-E1 cell monolayers for its structural attributes, using SEM and histology, and for its functional ability to maintain cell growth and viability. Using a combination of histology and anion exchange chromatography, we first confirmed the retention of GAGs within MX following the decellularisation process. Then the binding specificity of the retained GAG species within the MX for BMP2 was examined using a BMP2-HBP/EGFP (BMP2 Heparin-Binding Peptide/Enhanced Green Fluorescent Protein) fusion protein. The results of this study provide further evidence for a central role of the ECM in the regulation of BMP2 bioactivity, hence on mesenchymal stem cell commitment to the osteoblast lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351

    Article  PubMed  CAS  Google Scholar 

  • Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J et al (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 15:1894–1913

    Article  PubMed  CAS  Google Scholar 

  • Brickman YG, Ford MD, Gallagher JT, Nurcombe V, Bartlett PF, Turnbull JE (1998) Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J Biol Chem 273:4350–4359

    Article  PubMed  CAS  Google Scholar 

  • Coombe DR, Kett WC (2005) Heparan sulfate-protein interactions: therapeutic potential through structure-function insights. Cell Mol Life Sci 62:410–424

    Article  PubMed  CAS  Google Scholar 

  • Cowan CM, Aalami OO, Shi YY, Chou YF, Mari C, Thomas R, Quarto N, Nacamuli RP, Contag CH, Wu B, Longaker MT (2005) Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover. Tissue Eng 11:645–658

    Article  PubMed  CAS  Google Scholar 

  • Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26:971–977

    Article  PubMed  CAS  Google Scholar 

  • Depprich R, Handschel J, Sebald W, Kubler NR, Wurzler KK (2005) Comparison of the osteogenic activity of bone morphogenetic protein (BMP) mutants. Mund Kiefer Gesichtschir 9:363–368

    Article  PubMed  CAS  Google Scholar 

  • Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    Article  PubMed  CAS  Google Scholar 

  • Fisher MC, Li Y, Seghatoleslami MR, Dealy CN, Kosher RA (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol 25:27–39

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JT (1997) Structure-activity relationship of heparan sulphate. Biochem Soc Trans 25:1206–1209

    PubMed  CAS  Google Scholar 

  • Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA III, Nishi A, Hsieh-Wilson LC (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2:467–473

    Article  PubMed  CAS  Google Scholar 

  • Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG (2002) Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 277:33361–33368

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Lepine J, Massoglia S, Wood I (1984) Comparison of the ability of basement membranes produced by corneal endothelial and mouse-derived Endodermal PF-HR-9 cells to support the proliferation and differentiation of bovine kidney tubule epithelial cells in vitro. J Cell Biol 99:947–961

    Article  PubMed  CAS  Google Scholar 

  • Hallak LK, Kwilas SA, Peeples ME (2007) Interaction between respiratory syncytial virus and glycosaminoglycans, including heparan sulfate. Methods Mol Biol 379:15–34

    PubMed  CAS  Google Scholar 

  • Hollinger JO, Schmitt JM, Buck DC, Shannon R, Joh SP, Zegzula HD, Wozney J (1998) Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. J Biomed Mater Res 43:356–364

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Carlsen B, Rudkin GH, Shah N, Chung C, Ishida K, Yamaguchi DT, Miller TA (2001) Effect of serial passage on gene expression in MC3T3-E1 preosteoblastic cells: a microarray study. Biochem Biophys Res Commun 281:1120–1126

    Article  PubMed  CAS  Google Scholar 

  • Hwang NS, Varghese S, Puleo C, Zhang Z, Elisseeff J (2007) Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. J Cell Physiol 212:281–284

    Article  PubMed  CAS  Google Scholar 

  • Jackson RA, Murali S, van Wijnen AJ, Stein GS, Nurcombe V, Cool SM (2007) Heparan sulfate regulates the anabolic activity of MC3T3-E1 preosteoblast cells by induction of Runx2. J Cell Physiol 210:38–50

    Article  PubMed  CAS  Google Scholar 

  • Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS (2007) Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials 28:2763–2771

    Article  PubMed  CAS  Google Scholar 

  • Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327

    Article  PubMed  CAS  Google Scholar 

  • Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Long S, Truong L, Bennett K, Phillips A, Wong-Staal F, Ma H (2006) Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expr Purif 46:374–378

    Article  PubMed  CAS  Google Scholar 

  • Manton KJ, Sadasivam M, Cool SM, Nurcombe V (2006) Bone-specific heparan sulfates induce osteoblast growth arrest and downregulation of retinoblastoma protein. J Cell Physiol 209:219–229

    Article  PubMed  CAS  Google Scholar 

  • Marie P, Debiais F, Cohen-Solal M, de Vernejoul MC (2000) New factors controlling bone remodeling. Joint Bone Spine 67:150–156

    PubMed  CAS  Google Scholar 

  • Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277:49175–49185

    Article  PubMed  CAS  Google Scholar 

  • Murakami N, Saito N, Takahashi J, Ota H, Horiuchi H, Nawata M, Okada T, Nozaki K, Takaoka K (2003) Repair of a proximal femoral bone defect in dogs using a porous surfaced prosthesis in combination with recombinant BMP-2 and a synthetic polymer carrier. Biomaterials 24:2153–2159

    Article  PubMed  CAS  Google Scholar 

  • Paine-Saunders S, Viviano BL, Economides AN, Saunders S (2002) Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J Biol Chem 277:2089–2096

    Article  PubMed  CAS  Google Scholar 

  • Paredes R, Arriagada G, Cruzat F, Villagra A, Olate J, Zaidi K, van Wijnen A, Lian JB, Stein GS, Stein JL, Montecino M (2004) Bone-specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol Cell Biol 24:8847–8861

    Article  PubMed  CAS  Google Scholar 

  • Park K, Min BH, Han DK, Hasty K (2007) Quantitative analysis of temporal and spatial variations of chondrocyte behavior in engineered cartilage during long-term culture. Ann Biomed Eng 35:419–428

    Article  PubMed  Google Scholar 

  • Proudfoot AE (2006) The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans 34:422–426

    Article  PubMed  CAS  Google Scholar 

  • Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R (2000) Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone 27:453–459

    Article  PubMed  CAS  Google Scholar 

  • Ruppert R, Hoffmann E, Sebald W (1996) Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 237:295–302

    Article  PubMed  CAS  Google Scholar 

  • Sidhu KS, Lie KH, Tuch BE (2006) Transgenic human fetal fibroblasts as feeder layer for human embryonic stem cell lineage selection. Stem Cells Dev 15:741–747

    Article  PubMed  CAS  Google Scholar 

  • Stone B (2002) Dispatches from the last frontier of molecular and cell biology: biosynthesis of polysaccharides and proteoglycans of the cell surface and extracellular matrix. IUBMB Life 54:161–162

    PubMed  CAS  Google Scholar 

  • Sugahara K, Kitagawa H (2002) Heparin and heparan sulfate biosynthesis. IUBMB Life 54:163–175

    Article  PubMed  CAS  Google Scholar 

  • Takada T, Katagiri T, Ifuku M, Morimura N, Kobayashi M, Hasegawa K, Ogamo A, Kamijo R (2003) Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem 278:43229–43235

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 26:4856–4865

    Article  PubMed  CAS  Google Scholar 

  • Tumova S, Woods A, Couchman JR (2000) Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol 32:269–288

    Article  PubMed  CAS  Google Scholar 

  • Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11:75–82

    Article  PubMed  CAS  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  • Vandermoere F, El Yazidi-Belkoura I, Slomianny C, Demont Y, Bidaux G, Adriaenssens E, Lemoine J, Hondermarck H (2006) The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J Biol Chem 281:14307–14313

    Article  PubMed  CAS  Google Scholar 

  • Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H (2007) Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6:114–124

    Article  PubMed  CAS  Google Scholar 

  • Vogelin E, Jones NF, Huang JI, Brekke JH, Lieberman JR (2005) Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Joint Surg Am 87:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Wurzler KK, Emmert J, Eichelsbacher F, Kubler NR, Sebald W, Reuther JF (2004) [Evaluation of the osteoinductive potential of genetically modified BMP-2 variants]. Mund Kiefer Gesichtschir 8:83–92

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, Chung UI, Koike T, Takaoka K, Kamijo R (2006) Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem 281:23246–23253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the grant support from Singapore’s Agency for Science Technology and Research (A-STAR), the Biomedical Research Council (BMRC) of Singapore and the Institute of Molecular and Cell Biology (IMCB), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Nurcombe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünert, M., Dombrowski, C., Sadasivam, M. et al. Isolation of a native osteoblast matrix with a specific affinity for BMP2. J Mol Hist 38, 393–404 (2007). https://doi.org/10.1007/s10735-007-9119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9119-0

Keywords

Navigation