Skip to main content
Log in

Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments

  • Saline Water
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Salinibacter is a genus of red, extremely halophilic Bacteria. Thus far the genus is represented by a single species, Salinibacter ruber, strains of which have been isolated from saltern crystallizer ponds in Spain and on the Balearic Islands. Both with respect to its growth conditions and its physiology, Salinibacter resembles the halophilic Archaea of the order Halobacteriales. We have designed selective enrichment and isolation techniques to obtain Salinibacter and related red extremely halophilic Bacteria from different hypersaline environments, based on their resistance to anisomycin and bacitracin, two antibiotics that are potent inhibitors of the halophilic Archaea. Using direct plating on media containing bacitracin, we found Salinibacter-like organisms in numbers between 1.4×103 and 1.4×106ml−1 in brines collected from the crystallizer ponds of the salterns in Eilat, Israel, being equivalent to 1.8–18% of the total colony counts obtained on identical media without bacitracin. A number of strains from Eilat were subjected to a preliminary characterization, and they proved similar to the type strain of S. ruber. We also report here the isolation and molecular detection of Salinibacter-like organisms from an evaporite crust on the bottom of salt pools at the Badwater site in Death Valley, CA. These isolates and environmental 16S rRNA gene sequences differ in a number of properties from S. ruber, and they may represent a new species of Salinibacter or a new related genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antón, J., E. Llobet-Brossa, F. Rodríguez-Valera & R. Amann, 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environmental Microbiology 1: 517–523.

    Article  PubMed  Google Scholar 

  • Antón, J., R. Rosselló-Mora, F. Rodríguez-Valera & R. Amann, 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Applied and Environmental Microbiology 66: 3052–3057.

    Article  PubMed  Google Scholar 

  • Antón, J., A. Oren, S. Benlloch, F. Rodríguez-Valera, R. Amann & R. Rosselló-Mora, 2002. Salinibacter ruber gen. nov., sp. nov., a novel extremely halophilic member of the Bacteria from saltern crystallizer ponds. International Journal of Systematic and Evolutionary Microbiology 52: 485–491.

    PubMed  Google Scholar 

  • Altschul, S.F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Basinger, G. W. & J. D. Oliver, 1979. Inhibition of Halobacterium cutirubrum lipid biosynthesis by bacitracin. Journal of General Microbiology 111: 423–427.

    CAS  Google Scholar 

  • Christie, W. W., 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. In Christie W. W. (ed.) Advances in Lipid Methodology, vol. 2 Oily Press. Dundee, 69–111.

    Google Scholar 

  • Crowley, J. K. & S. J. Hook, 1996. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. Journal of Geophysical Research 101: 643–660.

    Article  CAS  Google Scholar 

  • Eder, K., 1995. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B 671: 113–131.

    CAS  Google Scholar 

  • Felsenstein, J., 1993. PHYLIP (phylogenetic inference package) version 3.5.1. Seattle: Department of Genetics, University of Washington.

  • Gonzalez, C., C. Gutierrez & C. Ramirez, 1978. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Canadian Journal of Microbiology 24: 710–715.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. -Y., J. -L. Garcia, B. K. C. Patel, J.-L. Cayol, L. Baresi & R. A. Mah, 2000. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. International Journal of Systematic and Evolutionary Microbiology 50: 615–622.

    PubMed  CAS  Google Scholar 

  • Hunt, C. B., 1975. Death Valley. Geology, Ecology, Archaeology. University of California Press, Berkeley.

    Google Scholar 

  • Jukes, T. H. & C. R. Cantor, 1969 Evolution of protein molecules. In Munro H. N., (ed.) Mammalian Protein Metabolism. Academic Press, New York: 21–132.

    Google Scholar 

  • Lutnæs, B. F., A. Oren & S. Liaaen-Jensen, 2002. New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. Journal of Natural Products 65: 1340–1343.

    Article  PubMed  CAS  Google Scholar 

  • Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, R. J. Farris, G. Garrity, G. J. Olsen, T. M. Schmidt & J. M. Tiedje, 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Research 29: 173–174.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. T., 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. Journal of Clinical Microbiology 16: 584–586.

    PubMed  CAS  Google Scholar 

  • Moldoveanu, N. & M. Kates, 1989. Effect of bacitracin on growth and phospholipid, glycolipid and bacterioruberin biosynthesis in Halobacterium cutirubrum. Journal of General Microbiology 135: 2504–2508.

    Google Scholar 

  • Mormile, M. R., M. A. Biesen, M. C. Gutirrrez, A. Ventosa, J. B. Pavlovich, T. C. Onstott & J. K. Fredrickson, 2003. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environmental Microbiology 5: 1094–1102.

    Article  PubMed  Google Scholar 

  • Oren, A., 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiology Ecology 73: 41–48.

    Article  CAS  Google Scholar 

  • Oren, A., 1992. On the red coloration of saltern crystallizer ponds. International Journal of Salt Lake Research 1: 77–89.

    Article  Google Scholar 

  • Oren, A., 2002a. Halophilic Microorganisms and their Environments. Kluwer Scientific Publishers, Dordrecht.

    Google Scholar 

  • Oren, A., 2002b. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology 39: 1–7.

    Article  CAS  Google Scholar 

  • Oren, A., 2002c. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology 28: 56–63.

    Article  CAS  Google Scholar 

  • Oren, A., 2004. The genera Rhodothermus, Thermonema, Hymenobacter and Salinibacter. In Dworkin M., S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.17, 31 August 2004. Springer, New York, http://link.springer-ny.com/link/service/books/10125/

  • Oren, A. & L. Mana, 2003. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiology Letters 223: 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Oren, A. & F. Rodríguez-Valera, 2001. The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiology Ecology 36: 123–130.

    PubMed  CAS  Google Scholar 

  • Oren, A., F. Rodríguez-Valera, J. Antón, S. Benlloch, R. Rosselló-Mora, R. Amann, J. Coleman & N. J. Russell, 2004. Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds. In Ventosa A. (ed.) Halophilic Microorganisms. Springer, Berlin, 63–76.

    Google Scholar 

  • Pecher, T. & A. Böck, 1981. In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. FEMS Microbiology Letters 10: 295–297.

    Article  CAS  Google Scholar 

  • Rainey, F. A., N. Ward-Rainey, R. M. Kroppenstedt & E. Stackebrandt, 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. International Journal of Systematic Bacteriology 46: 1088–1092.

    Article  PubMed  CAS  Google Scholar 

  • Rosselló-Mora, R., N. Lee, J. Antón & M. Wagner, 2003. Substrate update in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Wieland, F., J. Lechner & M. Sumper, 1982. The cell wall glycoprotein of Halobacterium: structural, functional and biosynthetic aspects. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, Originale C 3: 161–170.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren.

Additional information

Guest Editor: John M. Melack

Saline Waters and their Biota

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardavid, R.E., Ionescu, D., Oren, A. et al. Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments. Hydrobiologia 576, 3–13 (2007). https://doi.org/10.1007/s10750-006-0288-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0288-8

Keywords

Navigation