Skip to main content

Advertisement

Log in

Metabolites of Lactobacillus plantarum 2142 Prevent Oxidative Stress-Induced Overexpression of Proinflammatory Cytokines in IPEC-J2 Cell Line

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Probiotics have already proven beneficial effects in the treatment of several intestinal infections, but the underlying mechanisms how the probiotics can affect responses of porcine IPEC-J2 enterocytes to oxidative stress remained to be elucidated. The immunmodulatory effect of five bacterial strains (Lactobacillus plantarum 2142, Lactobacillus casei Shirota, Bifidobacterium animalis subsp. lactis BB-12, Bacillus amyloliquefaciens CECT 5940 and Enterococcus faecium CECT 4515) on 1 mM peroxide-triggered upregulation of interleukin (IL)-8 and tumor necrosis factor alpha (TNF-α) level was screened by q RT-PCR. Our data revealed that spent culture supernatant (SCS) of L. plantarum 2142 had significant lowering effect on IL-8 and TNF-α level with concomitant promoting activity on protective Hsp70 gene expression. According to our results, lactic acid (racemic, d- and l-lactic acid) and acetic acid produced by lactobacilli had no protective effect in quenching upregulation of proinflammatory cytokines. Furthermore, L. plantarum 2142-specific supernatant peptides were detected by gel electrophoresis and capillary zone electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Meyer, T.N., C. Schwesinger, J. Ye, B.M. Denker, and S.K. Nigam. 2001. Reassembly of the tight junction after oxidative stress depends on tyrosine kinase activity. Journal of Biological Chemistry 276: 22048–22055.

    Article  PubMed  CAS  Google Scholar 

  2. Seth, A., F.F. Yan, D.B. Polk, and R.K. Rao. 2008. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. AJP-Gastrointestinal and Liver Physiology 294: 1060–1069.

    Article  Google Scholar 

  3. Sleator, R.D., and C. Hill. 2008. New frontiers in probiotic research. Letters in Applied Microbiology 46: 143–147.

    Article  PubMed  CAS  Google Scholar 

  4. Oelschlaeger, T.A. 2010. Mechanisms of probiotic actions- A review. International Journal of Medical Microbiology 300: 57–62.

    Article  PubMed  CAS  Google Scholar 

  5. Ohashi, Y., and K. Ushida. 2009. Health-beneficial effects of probiotics: its mode of action. Animal Science Journal 80: 361–371.

    Article  PubMed  Google Scholar 

  6. Langerholc, T., P.A. Maragkoudakis, J. Wollgast, L. Gradisnik, and A. Cencic. 2011. Novel and established intestinal cell line models—an indispensable tool in food science and nutrition. Trends in Food Science and Technology. doi:10.1016/j.tifs.2011.03.010.

  7. Wells, J.M. 2011. Immunomodulatory mechanisms of lactobacilli. Microbial Cell Factories 10(Suppl 1): S17.

    Article  PubMed  Google Scholar 

  8. Wells, J.M., R. Oriana, M. Meijerink, and P. van Baarlen. 2011. Epithelial crosstalk at the microbiota–mucosal interface. Proceedings of the National Academy of Sciences of the United States of America 18(1): 4607–4614.

    Article  Google Scholar 

  9. Karczewski, J., F.J. Troost, I. Konings, J. Dekker, M. Kleerebezem, R.J.M. Brummer, and J.M. Wells. 2010. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Translational Physiology 298: G851–G859.

    CAS  Google Scholar 

  10. Klingberg, T.D., M.H. Pedersen, A. Cencic, and B.B. Budde. 2005. Application of measurements of transepithelial electrical resistance of intestinal epithelial cell monolayers to evaluate probiotic activity. Applied and Environmental Microbiology 71(11): 7528–7530.

    Article  PubMed  CAS  Google Scholar 

  11. Qin, H., Z. Zhang, X. Hang, and Y. Jiang. 2009. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiology 9: 63.

    Article  PubMed  Google Scholar 

  12. Ewaschuk, J.B., H. Diaz, L. Meddings, B. Diederichs, A. Dmytrash, J. Backer, M. Looijer-van Langen, and K.L. Madsen. 2008. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. AJP-Gastrointestinal and Liver Physiology 295: 1025–1034.

    Article  Google Scholar 

  13. Madsen, K., A. Cornish, P. Soper, C. McKaigney, H. Jijon, C. Yachimec, J. Doyle, L. Jewell, and C. De Simone. 2001. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121: 580591.

    Article  Google Scholar 

  14. Eckmann, L., M.F. Kagnoff, and J. Fierer. 1993. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infection and Immunity 61: 4569–4574.

    PubMed  CAS  Google Scholar 

  15. Hobbie, S., L.M. Chen, R.J. Davis, and J.E. Galán. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. Journal of Immunology 159: 5550–5559.

    CAS  Google Scholar 

  16. McCormick, B.A., C.A. Parkos, S.P. Colgan, D.K. Carnes, and J.L. Madara. 1998. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. Journal of Immunology 160: 455–466.

    CAS  Google Scholar 

  17. Wilson, M., R. Seymour, and B. Henderson. 1998. Bacterial perturbation of cytokine networks. Infection and Immunology 66: 2401–2409.

    CAS  Google Scholar 

  18. Lang, A., M. Lahav, E. Sakhnini, I. Barshack, H.H. Fiddler, B. Avidan, E. Bardan, R.R. Hershkowiz, S. Bar-Meir, and Y. Chowers. 2004. Allicin inhibits spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clinical Nutrition 23: 1199–1208.

    Article  PubMed  CAS  Google Scholar 

  19. Chowers, Y., L. Cahalon, M. Lahav, H. Schor, R. Tal, S. Bar-Meir, and M. Levite. 2000. Somatostatin through its specific receptor inhibits spontaneous and TNF-alpha- and bacteria-induced IL-8 and IL-1 beta secretion from intestinal epithelial cells. Journal of Immunology 165: 2955–2961.

    CAS  Google Scholar 

  20. Yamamoto, K., R. Kushima, O. Kisaki, Y. Fujiyama, and H. Okabe. 2003. Combined effect of hydrogen peroxide induced oxidative stress and IL-1 on IL-8 production in CaCo-2 cells (a human colon carcinoma cell line) and normal intestinal epithelial cells. Inflammation 27: 123–128.

    Article  PubMed  CAS  Google Scholar 

  21. Alzoghaibi, M.A., S.W. Walsh, A. Willey, D.R. Yager, A.A. Fowler, and M.F. Graham. 2004. Linoleic acid induces interleukin-8 production by Crohn's human intestinal smooth muscle cells via arachidonic acid metabolites. AJP-Gastrointestinal and Liver Physiology 286: 528–537.

    Article  Google Scholar 

  22. Coconnier, M.H., V. Lievin, M. Lorrot, and A.L. Servin. 2000. Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Applied and Environmental Microbiology 66: 1152–1157.

    Article  PubMed  CAS  Google Scholar 

  23. Candela, M., F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizello, M. Campieri, and P. Brigidi. 2008. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. International Journal of Food Microbiology 125: 286–292.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, L., N. Li, R. Caicedo, and J. Neu. 2005. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α-induced interleukin-8 production in Caco-2 cells. Journal of Nutrition 135: 1752–1756.

    PubMed  CAS  Google Scholar 

  25. McCracken, V.J., T. Chun, M.E. Baldeón, S. Ahrné, G. Molin, R.I. Mackie, and H.R. Gaskins. 2002. TNF-alpha sensitizes HT-29 colonic epithelial cells to intestinal lactobacilli. Experimental Biology and Medicine 227(8): 665–670.

    PubMed  CAS  Google Scholar 

  26. Ko, J.S., H.R. Yang, J.Y. Chang, and J.K. Seo. 2007. Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-alpha. World Journal of Gastroenterology 13(13): 1962–1965.

    PubMed  CAS  Google Scholar 

  27. Pathmakanthan, S., C.K. Li, J. Cowie, and C.J. Hawkey. 2004. Lactobacillus plantarum 299: beneficial in vitro immunomodulation in cells extracted from inflamed human colon. Journal of Gastroenterology and Hepatology 19(2): 166–173.

    Article  PubMed  Google Scholar 

  28. Santoro, M.G. 2000. Heat shock factors and the control of the stress response. Biochemical Pharmacology 59(1): 55–63.

    Article  PubMed  CAS  Google Scholar 

  29. Borges, J.C., and C.H. Ramos. 2005. Protein folding assisted by chaperones. Protein & Peptid Letters 12(3): 257–261.

    Article  CAS  Google Scholar 

  30. Musch, M.W., M.J. Ciancio, K. Sarge, and E.B. Chang. 1996. Induction of heat shock protein 70 protects intestinal epithelial IEC-18 cells from oxidant and thermal injury. American Journal of Physiology. Cell Physiology 270(2): C429–C436.

    CAS  Google Scholar 

  31. Malago, J.J., E. Nemeth, J.F.J.G. Koninkx, P.C.J. Tooten, S. Fajdiga, and J.E. van Dijk. 2010. Microbial products from probiotic bacteria inhibit Salmonella enteritidis 857-induced IL-8 synthesis in Caco-2 cells. Folia Microbiologica 55(4): 401–408.

    Article  PubMed  CAS  Google Scholar 

  32. Nemeth, E., S. Fajdiga, J. Malago, J. Koninkx, P. Tooten, and J. van Dijk. 2006. Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli. International Journal of Food Microbiology 112(3): 266–274.

    Article  PubMed  CAS  Google Scholar 

  33. Son, D.O., H. Satsu, and M. Shimizu. 2005. Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Letters 579: 4671–4677.

    Article  PubMed  CAS  Google Scholar 

  34. Ohland, C.L., and W.K. Macnaughton. 2010. Probiotic bacteria and intestinal epithelial barrier function. AJP-Gastrointestinal and Liver Physiology 298: 807–819.

    Article  Google Scholar 

  35. Yan, F., H. Cao, T.L. Cover, R. Whitehead, M.K. Washington, and D.B. Polk. 2007. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132: 562–575.

    Article  PubMed  CAS  Google Scholar 

  36. Chon, H., B. Choi, G. Jeong, E. Lee, and S. Lee. 2010. Suppression of proinflammatory cytokine production by specific metabolites of Lactobacillus plantarum 10hk2 via inhibiting NF-κB and p38 MAPK expressions. Comparative Immunology, Microbiology & Infection Diseases 33: 41–49.

    Article  Google Scholar 

  37. Bernet-Camard, M.F., V. Lievin, D. Brassart, J.R. Neeser, A.L. Servin, and S. Hudault. 1997. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Applied and Environmental Microbiology 63: 2747–2753.

    PubMed  CAS  Google Scholar 

  38. Coconnier, M.H., V. Lievin, M.F. Bernet-Camard, S. Hudault, and A.L. Servin. 1997. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrobial Agents and Chemotherapy 41: 1046–1052.

    PubMed  CAS  Google Scholar 

  39. Silva, M., N. Jacobus, C. Deneke, and S.L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrobial Agents and Chemotherapy 31: 1231–1233.

    Article  PubMed  CAS  Google Scholar 

  40. Samuvel, D.J., K.P. Sundararaj, A. Nareika, M.F. Lopes-Virella, and Y. Huang. 2009. Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation. Journal of Immunology 182: 2476–2484.

    Article  CAS  Google Scholar 

  41. Jensen, J.C., C. Buresh, and J.A. Norton. 1990. Lactic acidosis increases tumor necrosis factor secretion and transcription in vitro. Journal of Surgical Research 49: 350–353.

    Article  PubMed  CAS  Google Scholar 

  42. Douvdevani, A., O. Abramson, A. Tamir, A. Konforty, N. Isakov, and C. Chaimovitz. 1995. Commercial dialysate inhibits TNF alpha mRNA expression and NF-kB DNA-binding activity in LPS-stimulated macrophages. Kidney International 47: 1537–1545.

    Article  PubMed  CAS  Google Scholar 

  43. Kellum, J.A., M. Song, and J. Li. 2004. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. AJP-Regulatory. Integrative and Comparative Physiology 286: 686–692.

    Article  Google Scholar 

  44. Watanabe, T., H. Nishio, T. Tanigawa, H. Yamagami, H. Okazaki, K. Watanabe, K. Tominaga, Y. Fujiwara, N. Oshitani, T. Asahara, K. Nomoto, K. Higuchi, K. Takeuchi, and T. Arakawa. 2009. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. AJP-Gastrointestinal and Liver Physiology 297: 506–513.

    Article  Google Scholar 

  45. Dietl, K., K. Renner, K. Dettmer, B. Timischl, K. Eberhart, C. Dorn, C. Hellerbrand, M. Kastenberger, L.A. Kunz-Schughart, P.J. Oefner, R. Andreesen, E. Gottfried, and M.P. Kreutz. 2010. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. Journal of Immunology 184: 1200–1209.

    Article  CAS  Google Scholar 

  46. Peracaula, R., S. Barrabes, A. Sarrats, P.M. Rudd, and R. de Llorens. 2008. Altered glycosylation in tumours focused to cancer diagnosis. Disease Markers 25: 207–218.

    PubMed  CAS  Google Scholar 

  47. Sambuy, Y., I. De Angelis, G. Ranaldi, M.L. Scarino, A. Stammati, and F. Zucco. 2005. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology 21: 1–26.

    Article  PubMed  CAS  Google Scholar 

  48. Hidalgo, I.J. 2001. Assessing the absorption of new pharmaceuticals. Current Topics in Medicinal Chemistry 1: 385–401.

    Article  PubMed  CAS  Google Scholar 

  49. Cencic, A., and T. Langerholc. 2010. Functional cell models of the gut and their applications in food microbiology—A review. International Journal of Food Microbiology 141: 4–14.

    Article  Google Scholar 

  50. Nemeth, E., A. Halasz, A. Barath, and P. Galfi. 2007. Influence of lactic acid bacteria and their spent culture supernatant on hydrogen peroxide-induced interleukin-8 synthesis and necrosis of Caco-2 cells. Food and Agriculture Immunology 18: 95–105.

    Article  CAS  Google Scholar 

  51. Schierack, P., M. Nordhoff, M. Pollmann, K.D. Weyrauch, S. Amasheh, U. Lodemann, J. Jores, B. Tachu, S. Kleta, A. Blikslager, K. Tedin, and L.H. Wieler. 2006. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochemistry and Cell Biolology 125: 293–305.

    Article  CAS  Google Scholar 

  52. Paszti-Gere, E., E. Csibrik-Nemeth, K. Szeker, Cs Jakab, and P. Galfi. 2011. Acute oxidative stress affects IL-8 and TNF-α expression in IPEC-J2 porcine epithelial cells. Inflammation DOI:. doi:10.1007/s10753-011-9403-8.

  53. Rairakhwada, D., J.W. Seo, M.Y. Seo, O. Kwon, S.K. Rhee, and C.H. Kim. 2009. Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. Journal of Industrial Microbiology and Biotechnology 37(2): 195–204.

    Article  PubMed  Google Scholar 

  54. Xu, Q., T. Yajima, W. Li, K. Saito, Y. Ohshima, and Y. Yoshikai. 2006. Levan (β-2, 6-fructan), a major fraction of fermented soybean mucilage, displays immunostimulating properties via Toll-like receptor 4 signalling: induction of interleukin-12 production and suppression of T-helper type 2 response and immunoglobulin E production. Clinical and Experimental Allergy 36(1): 94–101.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The research described here has been supported by the Hungarian Scientific Research Fund (grant OTKA nos. 76133 and 100701). We are indebted to Dr. Jody Gookin and Dr. Stephen Stauffer, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA for providing IPEC-J2 cells and for the valuable advice on handling them. PCR product sequencing support from Dr. Balázs Gereben (Institute of Experimental Medicine of the Hungarian Academy of Sciences, Laboratory of Endocrine Neurobiology) is also acknowledged. We also would like to thank Dr. Éva Gelencsér, Dr. Emőke Németh-Szerdahelyi and Katalin Háder-Sólyom (Central Food Research Institute, Food Safety Department, Unit of Biology, Budapest, Hungary) for their extensive support in peptide electrophoretic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzsebet Paszti-Gere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paszti-Gere, E., Szeker, K., Csibrik-Nemeth, E. et al. Metabolites of Lactobacillus plantarum 2142 Prevent Oxidative Stress-Induced Overexpression of Proinflammatory Cytokines in IPEC-J2 Cell Line. Inflammation 35, 1487–1499 (2012). https://doi.org/10.1007/s10753-012-9462-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9462-5

KEY WORDS

Navigation