Skip to main content
Log in

Longitudinal Changes in Intellectual Development in Children with Fragile X Syndrome

  • Published:
Journal of Abnormal Child Psychology Aims and scope Submit manuscript

Abstract

Structural equation modeling (SEM) was used to examine the development of intellectual functioning in 145 school-age pairs of siblings. Each pair included one child with Fragile X syndrome (FXS) and one unaffected sibling. All pairs of children were evaluated on the Wechsler Intelligence Scale for Children—Third Edition (WISC-III) at time 1 and 80 pairs of children received a second evaluation at time 2 approximately 4 years later. Compared to their unaffected siblings, children with FXS obtained significantly lower percentage correct scores on all subtests of the WISC at both time points. During the time between the first and second assessments, the annual rate of intellectual development was approximately 2.2 times faster in the unaffected children compared to the children with FXS. Levels of the fragile X mental retardation protein (FMRP) were highly associated with intellectual ability scores of the children with FXS at both time points (r = 0.55 and 0.64 respectively). However, when gender, age, and the time between assessments were included as covariates in the structural equation model, FMRP accounted for only 5% of the variance in intellectual ability scores at time 1 and 13% of the variance at time 2. The results of this study suggest that slower learning contributes to the low and declining standardized IQ scores observed in children with FXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Some children with FXS also had siblings with FXS, although diagnosis was not always confirmed.

  2. In the study by Hall et al. (2007), 150 pairs of siblings were included. However, five boys with FXS were unable to complete any of the subtests on the WISC-III at either time point and refused blood draws for the FMRP analysis. These boys, and their unaffected siblings, were therefore excluded from the data analysis in the present study.

  3. This method can provide consistent parameter estimates in the presence of missing data, even when the data are not missing completely at random. Three alternative methods of estimating models with missing data include mean substitution, listwise deletion, and pairwise deletion. These methods are less efficient and provide consistent estimates only under the stronger assumption that any missing data are missing completely at random.

  4. Some investigators prefer to call these terms “other causes,” since they may contain systematic variance as well as random measurement errors.

  5. There were no significant differences in intellectual ability scores between male and female unaffected siblings. Therefore, the gender of the unaffected siblings was not included in the model.

  6. In a super parallel factor, the regression coefficients, error variances, and intercepts for all the indicators are equal.

  7. The error terms between the intellectual ability factors are correlated at time 1 and time 2. The magnitude depends in large part on the R 2 values for the factors. At time 2, they are very high, so only a small amount of systematic variance is left in the error terms. Hence, the error terms are highly correlated.

  8. In the boys with FXS, these values were obtained by multiplying the total effect of FMRP on intellectual ability at each time point times 80, an increase that would bring the mean FMRP level from 13% to 93%. Corresponding values for the girls were obtained by multiplying the total effect of FMRP on intellectual ability at each time point times 40, an increase that would bring the mean FMRP level from 43% to 93%.

References

  • Abrams, M. T., Kaufmann, W. E., Rousseau, F., Oostra, B. A., Wolozin, B., Taylor, C. V., et al. (1999). FMR1 gene expression in olfactory neuroblasts from two males with fragile X syndrome. American Journal of Medical Genetics, 82, 25–30.

    Article  PubMed  Google Scholar 

  • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides, & R. E. Schumacker (Eds.) Advanced structural equation modeling. Mahwah, New Jersey: Erlbaum.

    Google Scholar 

  • Arbuckle, J. L. (2005). Amos 6.0 user’s guide. Chicago, IL: SPSS Inc.

    Google Scholar 

  • Bailey Jr., D. B., Hatton, D. D., & Skinner, M. (1998). Early developmental trajectories of males with fragile X syndrome. American Journal on Mental Retardation, 103, 29–39.

    Article  PubMed  Google Scholar 

  • Bailey Jr., D. B., Hatton, D. D., Tassone, F., Skinner, M., & Taylor, A. K. (2001). Variability in FMRP and early development in males with fragile X syndrome. American Journal on Mental Retardation, 106, 16–27.

    Article  PubMed  Google Scholar 

  • Bennetto, L., Pennington, B. F., Porter, D., Taylor, A. K., & Hagerman, R. J. (2001). Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology, 15, 290–299.

    Article  PubMed  Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107, 238–246.

    Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.) Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  • Burns, D. D., & Nolen-Hoeksema, S. (1992). Therapeutic empathy and recovery from depression in cognitive-behavioral therapy: A structural equation model. Journal of Consulting and Clinical Psychology, 60, 441–449.

    Article  PubMed  Google Scholar 

  • Cornish, K., Swainson, R., Cunnington, R., Wilding, J., Morris, P., & Jackson, G. (2004). Do women with fragile X syndrome have problems in switching attention: Preliminary findings from ERP and fMRI. Brain & Cognition, 54, 235–239.

    Article  Google Scholar 

  • Dykens, E. M., Hodapp, R. M., & Leckman, J. F. (1989a). Adaptive and maladaptive functioning of institutionalized and noninstitutionalized fragile X males. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 427–430.

    PubMed  Google Scholar 

  • Dykens, E., Leckman, J., Paul, R., & Watson, M. (1988). Cognitive, behavioral, and adaptive functioning in fragile X and non-fragile X retarded men. Journal of Autism and Developmental Disorders, 18, 41–52.

    Article  PubMed  Google Scholar 

  • Dykens, E. M., Hodapp, R. M., Ort, S., Finucane, B., Shapiro, L. R., & Leckman, J. F. (1989b). The trajectory of cognitive development in males with fragile X syndrome. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 422–426.

    Article  PubMed  Google Scholar 

  • Fisch, G. S. (2006). Cognitive-behavioral profiles of females with the fragile X mutation. American Journal of Medical Genetics, 140A, 673–677.

    Article  Google Scholar 

  • Fisch, G. S., Carpenter, N. J., Holden, J. J., Simensen, R., Howard-Peebles, P. N., Maddalena, A., et al. (1999a). Longitudinal assessment of adaptive and maladaptive behaviors in fragile X males: growth, development, and profiles. American Journal of Medical Genetics, 83, 257–263.

    Article  PubMed  Google Scholar 

  • Fisch, G. S., Carpenter, N. J., Simensen, R., Smits, A. P., van Roosmalen, T., & Hamel, B. C. (1999b). Longitudinal changes in cognitive-behavioral levels in three children with FRAXE. American Journal of Medical Genetics, 84, 291–292.

    Article  PubMed  Google Scholar 

  • Fisch, G. S., Simensen, R., Arinami, T., Borghgraef, M., & Fryns, J. P. (1994). Longitudinal changes in IQ among fragile X females: a preliminary multicenter analysis. American Journal of Medical Genetics, 51, 353–357.

    Article  PubMed  Google Scholar 

  • Fisch, G. S., Simensen, R., Tarleton, J., Chalifoux, M., Holden, J. J., Carpenter, N., et al. (1996). Longitudinal study of cognitive abilities and adaptive behavior levels in fragile X males: A prospective multicenter analysis. American Journal of Medical Genetics, 64, 356–361.

    Article  PubMed  Google Scholar 

  • Freund, L. S., & Reiss, A. L. (1991). Cognitive profiles associated with the fra(X) syndrome in males and females. American Journal of Medical Genetics, 38, 542–547.

    Article  PubMed  Google Scholar 

  • Hagerman, R. J., Schreiner, R. A., Kemper, M. B., Wittenberger, M. D., Zahn, B., & Habicht, K. (1989). Longitudinal IQ changes in fragile X males. American Journal of Medical Genetics, 33, 513–518.

    Article  PubMed  Google Scholar 

  • Hall, S. S., Burns, D. D., & Reiss, A. L. (2007). Modeling family dynamics in children with fragile X syndrome. Journal of Abnormal Child Psychology, 35, 29–42.

    Article  PubMed  Google Scholar 

  • Hay, D. A. (1994). Does IQ decline with age in fragile-X? A methodological critique. American Journal of Medical Genetics, 51, 358–363.

    Article  PubMed  Google Scholar 

  • Kemper, M. B., Hagerman, R. J., Ahmad, R. S., & Mariner, R. (1986). Cognitive profiles and the spectrum of clinical manifestations in heterozygous fra (X) females. American Journal of Medical Genetics, 23, 139–156.

    Article  PubMed  Google Scholar 

  • Loesch, D. Z., Huggins, R. M., & Hagerman, R. J. (2004). Phenotypic variation and FMRP levels in fragile X. Mental Retardation and Developmental Disabilities Research Reviews, 10, 31–41.

    Article  PubMed  Google Scholar 

  • Mazzocco, M. M., Hagerman, R. J., & Pennington, B. F. (1992). Problem solving limitations among cytogenetically expressing fragile X women. American Journal of Medical Genetics, 43, 78–86.

    Article  PubMed  Google Scholar 

  • Miezejeski, C. M., Jenkins, E. C., Hill, A. L., Wisniewski, K., French, J. H., & Brown, W. T. (1986). A profile of cognitive deficit in females from fragile X families. Neuropsychologia, 24(3), 405–409.

    Article  PubMed  Google Scholar 

  • Munir, F., Cornish, K. M., & Wilding, J. (2000). A neuropsychological profile of attention deficits in young males with fragile X syndrome. Neuropsychologia, 38(9), 1261–1270.

    Article  PubMed  Google Scholar 

  • Reiss, A. L., Freund, L. S., Baumgardner, T. L., Abrams, M. T., & Denckla, M. B. (1995). Contribution of the FMR1 gene mutation to human intellectual dysfunction. Nature Genetics, 11, 331–334.

    Article  PubMed  Google Scholar 

  • Roberts, J. E., Mirrett, P., & Burchinal, M. (2001). Receptive and expressive communication development of young males with fragile X syndrome. American Journal on Mental Retardation, 106, 216–230.

    Article  PubMed  Google Scholar 

  • Skinner, M., Hooper, S., Hatton, D. D., Roberts, J., Mirrett, P., Schaaf, J., et al. (2005). Mapping nonverbal IQ in young boys with fragile X syndrome. American Journal of Medical Genetics, 132A, 25–32.

    Article  PubMed  Google Scholar 

  • Tassone, F., Hagerman, R. J., Gane, L. W., & Taylor, A. K. (1999a). Strong similarities of the FMR1 mutation in multiple tissues: Postmortem studies of a male with a full mutation and a male carrier of a premutation. American Journal of Medical Genetics, 84, 240–244.

    Article  PubMed  Google Scholar 

  • Tassone, F., Hagerman, R. J., Ikle, D. N., Dyer, P. N., Lampe, M., Willemsen, R., et al. (1999b). FMRP expression as a potential prognostic indicator in fragile X syndrome. American Journal of Medical Genetics, 84, 250–261.

    Article  PubMed  Google Scholar 

  • Tomarken, A. J., & Waller, N. G. (2003). Potential problems with “well fitting” models. Journal of Abnormal Psychology, 112, 578–598.

    Article  PubMed  Google Scholar 

  • Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1991). Wechsler Intelligence Scale for Children - Third Edition. Manual. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wiegers, A. M., Curfs, L. M., Vermeer, E. L., & Fryns, J. P. (1993). Adaptive behavior in the fragile X syndrome: Profile and development. American Journal of Medical Genetics, 47, 216–220.

    Article  PubMed  Google Scholar 

  • Willemsen, R., Anar, B., Otero, Y. D., de Vries, B. B., Hilhorst-Hofstee, Y., Smits, A., et al. (1999). Noninvasive test for fragile X syndrome, using hair root analysis. American Journal of Human Genetics, 65, 98–103.

    Article  PubMed  Google Scholar 

  • Willemsen, R., Smits, A., Mohkamsing, S., van Beerendonk, H., de Haan, A., de Vries, B., et al. (1997). Rapid antibody test for diagnosing fragile X syndrome: A validation of the technique. Human Genetics, 99(3), 308–311.

    Article  PubMed  Google Scholar 

  • Wright-Talamante, C., Cheema, A., Riddle, J. E., Luckey, D. W., Taylor, A. K., & Hagerman, R. J. (1996). A controlled study of longitudinal IQ changes in females and males with fragile X syndrome. American Journal of Medical Genetics, 64, 350–355.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the families for their participation in this project. This research was supported by NIH grants MH50047 and MH01142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott S. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, S.S., Burns, D.D., Lightbody, A.A. et al. Longitudinal Changes in Intellectual Development in Children with Fragile X Syndrome. J Abnorm Child Psychol 36, 927–939 (2008). https://doi.org/10.1007/s10802-008-9223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10802-008-9223-y

Keywords

Navigation