Skip to main content
Log in

Abnormal Transmethylation/transsulfuration Metabolism and DNA Hypomethylation Among Parents of Children with Autism

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

An Erratum to this article was published on 11 July 2008

Abstract

An integrated metabolic profile reflects the combined influence of genetic, epigenetic, and environmental factors that affect the candidate pathway of interest. Recent evidence suggests that some autistic children may have reduced detoxification capacity and may be under chronic oxidative stress. Based on reports of abnormal methionine and glutathione metabolism in autistic children, it was of interest to examine the same metabolic profile in the parents. The results indicated that parents share similar metabolic deficits in methylation capacity and glutathione-dependent antioxidant/detoxification capacity observed in many autistic children. Studies are underway to determine whether the abnormal profile in parents reflects linked genetic polymorphisms in these pathways or whether it simply reflects the chronic stress of coping with an autistic child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., et al. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15, 3132–3145. doi:10.1093/hmg/ddl253.

    Article  PubMed  Google Scholar 

  • Abdolmaleky, H. M., Cheng, K. H., Russo, A., Smith, C. L., Faraone, S. V., Wilcox, M., et al. (2005). Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 134, 60–66. doi:10.1002/ajmg.b.30140.

    Article  Google Scholar 

  • Abdolmaleky, H. M., Smith, C. L., Faraone, S. V., Shafa, R., Stone, W., Glatt, S. J., et al. (2004). Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. American Journal of Medical Genetics, 127B, 51–59. doi:10.1002/ajmg.b.20142.

    Article  PubMed  Google Scholar 

  • Alonso-Aperte, E., Ubeda, N., Achon, M., Perez-Miguelsanz, J., & Varela-Moreiras, G. (1999). Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation. Neurology, 52, 750–756.

    PubMed  Google Scholar 

  • Badcock, C., & Crespi, B. (2006). Imbalanced genomic imprinting in brain development: An evolutionary basis for the aetiology of autism. Journal of Evolutionary Biology, 19, 1007–1032. doi:10.1111/j.1420-9101.2006.01091.x.

    Article  PubMed  Google Scholar 

  • Bains, J. S., & Shaw, C. A. (1997). Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Research. Brain Research Reviews, 25, 335–358. doi:10.1016/S0165-0173(97)00045-3.

    Article  PubMed  Google Scholar 

  • Beaudet, A. L. (2002). Is medical genetics neglecting epigenetics? Genetics in Medicine, 4, 399–402. doi:10.1097/00125817-200209000-00013.

    Article  PubMed  Google Scholar 

  • Bleich, S., Frieling, H., & Hillemacher, T. (2007). Elevated prenatal homocysteine levels and the risk of schizophrenia. Archives of General Psychiatry, 64, 980–981. doi:10.1001/archpsyc.64.8.980.

    Article  PubMed  Google Scholar 

  • Brattström, L., Landgren, F., Israelsson, B., Lindgren, A., Hultberg, B., Andersson, A., et al. (1998). Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. BMJ (Clinical Research Ed), 316, 894–898.

    Google Scholar 

  • Castro, R., Rivera, I., Struys, E. A., Jansen, E. E. W., Ravasco, P., Camilo, M. E., et al. (2003). Increased, homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clinical Chemistry, 49, 1292–1296. doi:10.1373/49.8.1292.

    Article  PubMed  Google Scholar 

  • Caudill, M. A., Wang, J. C., Melnyk, S., Pogribny, I. P., Jernigan, S., Collins, M. D., et al. (2001). Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl deficient cystathionine β-synthase heterozygous mice. The Journal of Nutrition, 131, 2811–2818.

    PubMed  Google Scholar 

  • CDC. (2005). http://www.medicalhomeinfo.org/health/Autism%20downloads/AutismAlarm.pdf.

  • Chakraborti, A., Gulati, K., Banerjee, B. D., & Ray, A. (2007). Possible involvement of free radicals in the differential neurobehavioral responses to stress in male and female rats. Behavioural Brain Research, 179, 321–325. doi:10.1016/j.bbr.2007.02.018.

    Article  PubMed  Google Scholar 

  • Chauhan, A., Chauhan, V., Brown, W. T., & Cohen, I. (2004). Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin–the antioxidant proteins. Life Sciences, 75, 2539–2549. doi:10.1016/j.lfs.2004.04.038.

    Article  PubMed  Google Scholar 

  • Corrales, F., Ochoa, P., Rivas, C., Martin-Lomas, M., Mato, J. M., & Pajares, M. A. (1991). Inhibition of glutathione synthesis in the liver leads to S-adenosyl-L-methionine synthetase reduction. Hepatology (Baltimore, Md.), 14, 528–533.

    Google Scholar 

  • Cuco, G., Fernandez-Ballart, J., Sala, J., Viladrich, C., Iranzo, R., Vila, J., et al. (2006). Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. European Journal of Clinical Nutrition, 60, 364–371. doi:10.1038/sj.ejcn.1602324.

    Article  PubMed  Google Scholar 

  • De Bree, A., Verschuren, W. M., Kromhout, D., Kluijtmans, L. A., & Blom, H. J. (2002). Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacological Reviews, 54, 599–618. doi:10.1124/pr.54.4.599.

    Article  PubMed  Google Scholar 

  • Dreosti, I. E. (1998). Nutrition, cancer, and aging. Annals of the New York Academy of Sciences, 854, 371–377. doi:10.1111/j.1749-6632.1998.tb09917.x.

    Article  PubMed  Google Scholar 

  • Eskiocak, S., Gozen, A. S., Yapar, S. B., Tavas, F., Kilic, A. S., & Eskiocak, M. (2005). Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Human Reproduction (Oxford, England), 20, 2595–2600. doi:10.1093/humrep/dei062.

    Article  Google Scholar 

  • Feil, R. (2006a). Environmental and nutritional effects on the epigenetic regulation of genes. Mutation Research, 600, 46–57. doi:10.1016/j.mrfmmm.2006.05.029.

    PubMed  Google Scholar 

  • Fidelus, R. K., & Tsan, M. F. (1987). Glutathione and lymphocyte activation: A function of ageing and auto-immune disease. Immunology, 61, 503–508.

    PubMed  Google Scholar 

  • Filomeni, G., Rotilio, G., & Ciriolo, M. R. (2002). Cell signalling and the glutathione redox system. Biochemical Pharmacology, 64, 1057–1064. doi:10.1016/S0006-2952(02)01176-0.

    Article  PubMed  Google Scholar 

  • Frey, B. N., Andreazza, A. C., Kunz, M., Gomes, F. A., Quevedo, J., Salvador, M., et al. (2007). Increased oxidative stress and DNA damage in bipolar disorder: A twin-case report. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 283–285. doi:10.1016/j.pnpbp.2006.06.011.

    Article  PubMed  Google Scholar 

  • Friso, S., & Choi, S. W. (2002). Gene-nutrient interactions and DNA methylation. The Journal of Nutrition, 132, 2382S–2387S.

    PubMed  Google Scholar 

  • Friso, S., Choi, S. W., Dolnikowski, G. G., & Selhub, J. (2002a). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Analytical Chemistry, 74, 4526–4531. doi:10.1021/ac020050h.

    Article  PubMed  Google Scholar 

  • Friso, S., Choi, S. W., Girelli, D., Mason, J. B., Dolnikowski, G. G., Bagley, P. J., et al. (2002b). A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proceedings of the National Academy of Sciences of the United States of America, 99, 5606–5611. doi:10.1073/pnas.062066299.

    Article  PubMed  Google Scholar 

  • Fuso, A., Seminara, L., Cavallaro, R. A., D’Anselmi, F., & Scarpa, S. (2005). S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Molecular and Cellular Neurosciences, 28, 195–204. doi:10.1016/j.mcn.2004.09.007.

    Article  PubMed  Google Scholar 

  • Giordano, V., Peluso, G., Iannuccelli, M., Benatti, P., Nicolai, R., & Calvani, M. (2007). Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer’s dementia. Neurochemical Research, 32, 555–567. doi:10.1007/s11064-006-9125-8.

    Article  PubMed  Google Scholar 

  • Greene, L. S. (1995). Asthma and oxidant stress: Nutritional, environmental, and genetic risk factors. Journal of the American College of Nutrition, 14, 317–324.

    PubMed  Google Scholar 

  • Guerra-Shinohara, E. M., Paiva, A. A., Rondo, P. H., Yamasaki, K., Terzi, C. A., & D’Almeida, V. (2002). Relationship between total homocysteine and folate levels in pregnant women and their newborn babies according to maternal serum levels of vitamin B12. BJOG, 109, 784–791. doi:10.1111/j.1471-0528.2002.01307.x.

    Article  PubMed  Google Scholar 

  • Hayes, J. D., & Strange, R. C. (2000). Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology, 61, 154–166. doi:10.1159/000028396.

    Article  PubMed  Google Scholar 

  • Hermann, A., Gowher, H., & Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cellular and Molecular Life Sciences, 61, 2571–2587. doi:10.1007/s00018-004-4201-1.

    Article  PubMed  Google Scholar 

  • Hobbs, C. A., Cleves, M. A., Melnyk, S., Zhao, W., & James, S. J. (2005a). Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. The American Journal of Clinical Nutrition, 81, 147–153.

    PubMed  Google Scholar 

  • Hobbs, C. A., Cleves, M. A., Zhao, W., Melnyk, S., & James, S. J. (2005b). Congenital heart defects and maternal biomarkers of oxidative stress. The American Journal of Clinical Nutrition, 82, 598–604.

    PubMed  Google Scholar 

  • Hogart, A., Nagarajan, R. P., Patzel, K. A., Yasui, D. H., & LaSalle, J. M. (2007). 15q11–13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16, 691–703. doi:10.1093/hmg/ddm014.

    Article  PubMed  Google Scholar 

  • Ingrosso, D., D’angelo, S., di Carlo, E., Perna, A. F., Zappia, V., & Galletti, P. (2000). Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. European Journal of Biochemistry, 267, 4397–4405. doi:10.1046/j.1432-1327.2000.01485.x.

    Article  PubMed  Google Scholar 

  • Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., et al. (1998). Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. The Journal of Nutrition, 128, 1204–1212.

    PubMed  Google Scholar 

  • James, S. J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D. W., et al. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. The American Journal of Clinical Nutrition, 80, 1611–1617.

    PubMed  Google Scholar 

  • James, S. J., Melnyk, S., Jernigan, S., Cleves, M. A., Halsted, C. H., Wong, D. H., et al. (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141, 947–956. doi:10.1002/ajmg.b.30366.

    Article  Google Scholar 

  • James, S. J., Melnyk, S., Pogribna, M., Pogribny, I. P., & Caudill, M. A. (2002). Elevation in S-adenosylhomocysteine and DNA hypomethylation: Potential epigenetic mechanism for homocysteine-related pathology. The Journal of Nutrition, 132, 2361S–2366S.

    PubMed  Google Scholar 

  • Kates, W. R., Burnette, C. P., Eliez, S., Strunge, L. A., Kaplan, D., Landa, R., et al. (2004). Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. The American Journal of Psychiatry, 161, 539–546. doi:10.1176/appi.ajp.161.3.539.

    Article  PubMed  Google Scholar 

  • Kilbourne, A. M., Brar, J. S., Drayer, R. A., Xu, X., & Post, E. P. (2007). Cardiovascular disease and metabolic risk factors in male patients with schizophrenia, schizoaffective disorder, and bipolar disorder. Psychosomatics, 48, 412–417. doi:10.1176/appi.psy.48.5.412.

    Article  PubMed  Google Scholar 

  • Kuratomi, G., Iwamoto, K., Bundo, M., Kusumi, I., Kato, N., Iwata, N., et al. (2007). Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Molecular Psychiatry, 13(4), 429–441.

    Google Scholar 

  • Li, Z., Dong, T., Proschel, C., & Noble, M. (2007). Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biology, 5, e35. doi:10.1371/journal.pbio.0050035.

    Article  PubMed  Google Scholar 

  • Lopez-Rangel, E., & Lewis, M. E. (2006). Loud and clear evidence for gene silencing by epigenetic mechanisms in autism and related neurodevelopmental disorders. Clinical Genetics, 69, 21–22. doi:10.1111/j.1399-0004.2006.00543a.x.

    Article  PubMed  Google Scholar 

  • Lyons, J., Rauh-Pfeiffer, A., Yu, Y. M., Lu, X. M., Zurakowski, D., Tompkins, R. G., et al. (2000). Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proceedings of the National Academy of Sciences of the United States of America, 97, 5071–5076. doi:10.1073/pnas.090083297.

    Article  PubMed  Google Scholar 

  • Mattson, M. P. (2003). Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Research Reviews, 2, 329–342. doi:10.1016/S1568-1637(03)00013-8.

    Article  PubMed  Google Scholar 

  • Mattson, M. P., & Shea, T. B. (2003). Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends in Neurosciences, 26, 137–146. doi:10.1016/S0166-2236(03)00032-8.

    Article  PubMed  Google Scholar 

  • McKeever, M., Molloy, A., Weir, D. G., Young, P. B., Kennedy, D. G., Kennedy, S., et al. (1995). An abnormal methylation ratio induces hypomethylation in vitro in the brain of pig and man, but not in rat. Clinical Science, 88, 73–79.

    PubMed  Google Scholar 

  • Melnyk, S., Pogribna, M., Pogribny, I., Hine, R. J., & James, S. J. (1999). A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection. The Journal of Nutritional Biochemistry, 10, 490–497. doi:10.1016/S0955-2863(99)00033-9.

    Article  PubMed  Google Scholar 

  • Melnyk, S., Pogribna, M., Pogribny, I. P., Yi, P., & James, S. J. (2000). Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: Alterations with plasma homocysteine and pyridoxal 5’-phosphate concentrations. Clinical Chemistry, 46, 265–272.

    PubMed  Google Scholar 

  • Ming, X., Stein, T. P., Brimacombe, M., Johnson, W. G., Lambert, G. H., & Wagner, G. C. (2005). Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukotrienes and Essential Fatty Acids, 73, 379–384. doi:10.1016/j.plefa.2005.06.002.

    Article  Google Scholar 

  • Morrison, J. A., Jacobsen, D. W., Sprecher, D. L., Robinson, K., Khoury, P., & Daniels, S. R. (1999). Serum glutathione in adolescent males predicts parental coronary heart disease. Circulation, 100, 2244–2247.

    PubMed  Google Scholar 

  • Murphy, M. M., Fernandez-Ballart, J. D., Arija, V., Scott, J. M., Molloy, A. M., & Canals, J. (2007). Maternal homocysteine at preconception is negatively correlated with cognitive achievement in children at 4 months and 6 years of age. Conference Proceedings, 6th International Conference on Homocysteine Metabolism. Clinical Chemistry and Laboratory Medicine, 45(5), A23.

  • Murphy, M. M., Scott, J. M., Arija, V., Molloy, A. M., & Fernandez-Ballart, J. D. (2004). Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight. Clinical Chemistry, 50, 1406–1412. doi:10.1373/clinchem.2004.032904.

    Article  PubMed  Google Scholar 

  • Nakayama, A., Masaki, S., & Aoki, E. (2006). Nihon Shinkei Seishin Yakurigaku Zasshi, 26, 209–212. (Genetics and epigenetics in autism).

    Google Scholar 

  • Niculescu, M. D., & Zeisel, S. H. (2002). Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline. The Journal of Nutrition, 132, 2333S–2335S.

    PubMed  Google Scholar 

  • Ono, H., Sakamoto, A., & Sakura, N. (2001). Plasma total glutathione concentrations in healthy pediatric and adult subjects. Clinica Chimica Acta, 312, 227–229. doi:10.1016/S0009-8981(01)00596-4.

    Article  Google Scholar 

  • Pastore, A., Federici, G., Bertini, E., & Piemonte, F. (2003). Analysis of glutathione: Implication in redox and detoxification. Clinica Chimica Acta, 333, 19–39. doi:10.1016/S0009-8981(03)00200-6.

    Article  Google Scholar 

  • Pennington, K., Beasley, C. L., Dicker, P., Fagan, A., English, J., Pariante, C. M., et al. (2007). Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Molecular Psychiatry [Epub ahead of print].

  • Perna, A. F., Ingrosso, D., Lombardi, C., Acanfora, F., Satta, E., Cesare, C. M., et al. (2003). Possible mechanisms of homocysteine toxicity. Kidney International, 63, S137–S140. doi:10.1046/j.1523-1755.63.s84.33.x.

    Article  Google Scholar 

  • Razin, A. (1998). CpG methylation, chromatin structure and gene silencing - a three-way connection. The EMBO Journal, 17, 4905–4908. doi:10.1093/emboj/17.17.4905.

    Article  PubMed  Google Scholar 

  • Regland, B., Johansson, B. V., & Gottfries, C.-G. (1994). Homocysteinemia and schizophrenia as a case of methylation deficiency. Journal of Neural Transmission, 98, 143–152. doi:10.1007/BF01277017.

    Article  PubMed  Google Scholar 

  • Reik, W., & Dean, W. (2001). DNA methylation and mammalian epigenetics. Electrophoresis, 22, 2838–2843. doi:10.1002/1522-2683(200108)22:14≤2838::AID-ELPS2838≥3.0.CO;2-M.

    Article  PubMed  Google Scholar 

  • Richardson, B. (2003). DNA methylation and autoimmune disease. Clinical Immunology (Orlando, Fla.), 109, 72–79. doi:10.1016/S1521-6616(03)00206-7.

    Article  Google Scholar 

  • Robertson, K. D., & Jones, P. A. (2000). DNA methylation: Past, present and future directions. Carcinogenesis, 21, 461–467. doi:10.1093/carcin/21.3.461.

    Article  PubMed  Google Scholar 

  • Samaco, R. C., Hogart, A., & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14, 483–492. doi:10.1093/hmg/ddi045.

    Article  PubMed  Google Scholar 

  • Schanen, N. C. (2006). Epigenetics of autism spectrum disorders. Human Molecular Genetics, 15(Spec No 2), R138–R150.

    Google Scholar 

  • Sogut, S., Zoroglu, S. S., Ozyurt, H., Ramazan, Y. H., Ozugurlu, F., Sivasli, E., et al. (2003). Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clinica Chimica Acta, 331, 111–117. doi:10.1016/S0009-8981(03)00119-0.

    Article  Google Scholar 

  • Ullegaddi, R., Powers, H. J., & Gariballa, S. E. (2006). Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: A randomized controlled trial. Journal of Parenteral and Enteral Nutrition, 30, 108–114.

    Article  PubMed  Google Scholar 

  • Walker, M. C., Smith, G. N., Perkins, S. L., Keely, E. J., & Garner, P. R. (1999). Changes in homocysteine levels during normal pregnancy. American Journal of Obstetrics and Gynecology, 180, 660–664. doi:10.1016/S0002-9378(99)70269-3.

    Article  PubMed  Google Scholar 

  • Weaver, I. C., D’Alessio, A. C., Brown, S. E., Hellstrom, I. C., Dymov, S., Sharma, S., et al. (2007). The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. The Journal of Neuroscience, 27, 1756–1768. doi:10.1523/JNEUROSCI.4164-06.2007.

    Article  PubMed  Google Scholar 

  • Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134, 489–492.

    PubMed  Google Scholar 

  • Yao, J. K., Leonard, S., & Reddy, R. (2006a). Altered glutathione redox state in schizophrenia. Disease Markers, 22, 83–93.

    PubMed  Google Scholar 

  • Yao, Y., Walsh, W. J., McGinnis, W. R., & Pratico, D. (2006b). Altered vascular phenotype in autism: Correlation with oxidative stress. Archives of Neurology, 63, 1161–1164. doi:10.1001/archneur.63.8.1161.

    Article  PubMed  Google Scholar 

  • Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P., Hines, R. J., & James, S. J. (2000). Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. The Journal of Biological Chemistry, 275, 29318–29323. doi:10.1074/jbc.M002725200.

    Article  PubMed  Google Scholar 

  • Zaidi, S. M., Al Qirim, T. M., & Banu, N. (2005). Effects of antioxidant vitamins on glutathione depletion and lipid peroxidation induced by restraint stress in the rat liver. Drugs in R&D, 6, 157–165. doi:10.2165/00126839-200506030-00004.

    Article  Google Scholar 

  • Zoroglu, S. S., Armutcu, F., Ozen, S., Gurel, A., Sivasli, E., Yetkin, O., et al. (2004). Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. European Archives of Psychiatry and Clinical Neuroscience, 254, 143–147. doi:10.1007/s00406-004-0456-7.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the participating families affected by autism in Arkansas without whom this study would not have been possible. This research was supported, in part, with funding from the National Institute of Child Health and Development (RO1 HD051873) to SJJ, and by grants from the University of Arkansas for Medical Sciences Children’s University Medical Group and the Arkansas Biosciences Institute (SJJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jill James.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10803-008-0614-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jill James, S., Melnyk, S., Jernigan, S. et al. Abnormal Transmethylation/transsulfuration Metabolism and DNA Hypomethylation Among Parents of Children with Autism. J Autism Dev Disord 38, 1966–1975 (2008). https://doi.org/10.1007/s10803-008-0591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-008-0591-5

Keywords

Navigation