Skip to main content
Log in

The Rubber Hand Illusion Reveals Proprioceptive and Sensorimotor Differences in Autism Spectrum Disorders

  • Original paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is characterised by differences in unimodal and multimodal sensory and proprioceptive processing, with complex biases towards local over global processing. Many of these elements are implicated in versions of the rubber hand illusion (RHI), which were therefore studied in high-functioning individuals with ASD and a typically developing control group. Both groups experienced the illusion. A number of differences were found, related to proprioception and sensorimotor processes. The ASD group showed reduced sensitivity to visuotactile-proprioceptive discrepancy but more accurate proprioception. This group also differed on acceleration in subsequent reach trials. Results are discussed in terms of weak top-down integration and precision-accuracy trade-offs. The RHI appears to be a useful tool for investigating multisensory processing in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.

    PubMed  Google Scholar 

  • Armel, K. C., & Ramachandran, V. S. (2003). Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London Series B: Biological Sciences, 270(1523), 1499–1506. doi:10.1098/rspb.2003.2364.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163–175.

    Article  PubMed  Google Scholar 

  • Bays, P. M., & Wolpert, D. M. (2007). Computational principles of sensorimotor control that minimize uncertainty and variability. The Journal of Physiology, 578(2), 387–396. doi:10.1113/jphysiol.2006.120121.

    Article  PubMed  Google Scholar 

  • Bebko, J. M., Weiss, J. A., Demark, J. L., & Gomez, P. (2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47(1), 88–98. doi:10.1111/j.1469-7610.2005.01443.x.

    Article  PubMed  Google Scholar 

  • Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 1–11. doi:10.1007/s10803-008-0593-3.

    Article  PubMed  Google Scholar 

  • Bölte, S., Holtmann, M., Poustka, F., Scheurich, A., & Schmidt, L. (2007). Gestalt perception and local-global processing in high-functioning autism. Journal of Autism and Developmental Disorders, 37(8), 1493–1504. doi:10.1007/s10803-006-0231-x.

    Article  PubMed  Google Scholar 

  • Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A.-M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235. doi:10.1162/089892903321208169.

    Article  PubMed  Google Scholar 

  • Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756.

    Article  PubMed  Google Scholar 

  • Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38(1), 127–137. doi:10.1007/s10803-007-0370-8.

    Article  PubMed  Google Scholar 

  • Chong, T. W. H., & Castle, D. J. (2004). Layer upon layer: thermoregulation in schizophrenia. Schizophrenia Research, 69(2–3), 149–157. doi:10.1016/S0920-9964(03)00222-6.

    Article  PubMed  Google Scholar 

  • Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507. doi:10.1016/j.neuron.2005.10.018.

    Article  PubMed  Google Scholar 

  • Desmurget, M., Vindras, P., Gréa, H., Viviani, P., & Grafton, S. T. (2000). Proprioception does not quickly drift during visual occlusion. Experimental Brain Research, 134(3), 363–377.

    Article  Google Scholar 

  • Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science, 317(5841), 1048. doi:10.1126/science.1142175.

    Article  PubMed  Google Scholar 

  • Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305(5685), 875–877.

    Article  PubMed  Google Scholar 

  • Enticott, P. G., Kennedy, H. A., Bradshaw, J. L., Rinehart, N. J., & Fitzgerald, P. B. (2010). Understanding mirror neurons: Evidence for enhanced corticospinal excitability during the observation of transitive but not intransitive hand gestures. Neuropsychologia, 48(9), 2675–2680. doi:10.1016/j.neuropsychologia.2010.05.014.

    Article  PubMed  Google Scholar 

  • Enticott, P. G., Kennedy, H. A., Rinehart, N. J., Tonge, B. J. Bradshaw, J. L., Taffe, J. R., et al. (in press). Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biological Psychiatry. doi:10.1016/j.biopsych.2011.09.001.

  • Ernst, M., & Banks, M. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

    Google Scholar 

  • Fiorio, M., Weise, D., Önal-Hartmann, C., Zeller, D., Tinazzi, M., & Classen, J. (2011). Impairment of the rubber hand illusion in focal hand dystonia. Brain, 134(5), 1428–1437. doi:10.1093/brain/awr026.

    Article  PubMed  Google Scholar 

  • Foss-Feig, J., Kwakye, L., Cascio, C., Burnette, C., Kadivar, H., Stone, W., et al. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381–389. doi:10.1007/s00221-010-2240-4.

    Article  Google Scholar 

  • Frith, U. (1989). Autism: Explaining the enigma. Oxford: Blackwell.

    Google Scholar 

  • Fuentes, C., Mostofsky, S., & Bastian, A. (2010). No proprioceptive deficits in autism despite movement-related sensory and execution impairments. Journal of Autism and Developmental Disorders, 41(10), 1352–1361.

    Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.

    Article  PubMed  Google Scholar 

  • Gepner, B., & Mestre, D. R. (2002). Brief report: Postural reactivity to fast visual motion differentiates autistic from children with Asperger syndrome. Journal of Autism and Developmental Disorders, 32(3), 231–238. doi:10.1023/a:1015410015859.

    Article  PubMed  Google Scholar 

  • Gepner, B., Mestre, D., Masson, G., & de Schonen, S. (1995). Postural effects of motion vision in young autistic children. NeuroReport, 6(8), 1211–1214.

    Article  PubMed  Google Scholar 

  • Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2008). Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neuroscience and Biobehavioral Reviews, 32(1), 143–160. doi:10.1016/j.neubiorev.2007.07.001.

    Article  PubMed  Google Scholar 

  • Gross, Y., & Melzack, R. (1978). Body image: Dissociation of real and perceived limbs by pressure-cuff ischemia. Experimental Neurology, 61(3), 680–688. doi:10.1016/0014-4886(78)90032-8.

    Article  PubMed  Google Scholar 

  • Gross, Y., Webb, R., & Melzack, R. (1974). Central and peripheral contributions to localization of body parts: Evidence for a central body schema. Experimental Neurology, 44(3), 346–362. doi:10.1016/0014-4886(74)90201-5.

    Article  PubMed  Google Scholar 

  • Guterstam, A., Petkova, V. I., & Ehrsson, H. H. (2011). The illusion of owning a third arm. PloS One, 6(2), e17208.

    Article  PubMed  Google Scholar 

  • Haans, A., Ijsselsteijn, W. A., & de Kort, Y. A. W. (2008). The effect of similarities in skin texture and hand shape on perceived ownership of a fake limb. Body Image, 5(4), 389–394.

    Article  PubMed  Google Scholar 

  • Happé, F. G. E. (1996). Studying weak central coherence at low levels: Children with autism do not succumb to visual illusions. A research note. Journal of Child Psychology and Psychiatry, 37(7), 873–877. doi:10.1111/j.1469-7610.1996.tb01483.x.

    Article  PubMed  Google Scholar 

  • Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. doi:10.1007/s10803-005-0039-0.

    Article  PubMed  Google Scholar 

  • Haswell, C. C., Izawa, J., Dowell, L. R., Mostofsky, S. H., & Shadmehr, R. (2009). Representation of internal models of action in the autistic brain. Nature Neuroscience, 12(8), 970–972. doi:10.1038/nn.2356.

    Google Scholar 

  • Hohwy, J., & Paton, B. (2010). Explaining away the body: Experiences of supernaturally caused touch and touch on non-hand objects within the rubber hand illusion. PloS One, 5(2), e9416. http://dx.plos.org/10.1371/journal.pone.0009416.

  • Hoy, J. A., Hatton, C., & Hare, D. (2004). Weak central coherence: A cross-domain phenomenon specific to autism? Autism, 8(3), 267–281. doi:10.1177/1362361304045218.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942–951. doi:10.1038/nrn2024.

    Article  PubMed  Google Scholar 

  • Iarocci, G., & McDonald, J. (2006). Sensory integration and the perceptual experience of persons with autism. Journal of Autism and Developmental Disorders, 36(1), 77–90. doi:10.1007/s10803-005-0044-3.

    Article  PubMed  Google Scholar 

  • Ionta, S., Heydrich, L., Lenggenhager, B., Mouthon, M., Fornari, E., Chapuis, D., et al. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron, 70(2), 363–374.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (1986). Mechanisms of visuomotor coordination: A study in normal and brain-damaged subjects. Neuropsychologia, 24, 41–78.

    Article  PubMed  Google Scholar 

  • Kaiser, M. D., & Pelphrey, K. A. (2012). Disrupted action perception in autism: Behavioral evidence, neuroendophenotypes, and diagnostic utility. Developmental Cognitive Neuroscience, 2(1), 25–35. doi:10.1016/j.dcn.2011.05.005.

  • Kammers, M. P. M., de Vignemont, F., Verhagen, L., & Dijkerman, H. C. (2009a). The rubber hand illusion in action. Neuropsychologia, 47(1), 204–211.

    Article  PubMed  Google Scholar 

  • Kammers, M., Kootker, J., Hogendoorn, H., & Dijkerman, H. (2010). How many motoric body representations can we grasp? Experimental Brain Research, 202(1), 203–212. doi:10.1007/s00221-009-2124-7.

    Article  Google Scholar 

  • Kammers, M. P. M., Longo, M. R., Tsakiris, M., Dijkerman, H. C., & Haggard, P. (2009b). Specificity and coherence of body representations. Perception, 38(12), 1804–1820.

    Article  PubMed  Google Scholar 

  • Kammers, M. P. M., Rose, K., & Haggard, P. (2011). Feeling numb: Temperature, but not thermal pain, modulates feeling of body ownership. Neuropsychologia, 49(5), 1316–1321. doi:10.1016/j.neuropsychologia.2011.02.039.

    Article  PubMed  Google Scholar 

  • Kammers, M. P. M., Verhagen, L., Dijkerman, H. C., Hogendoorn, H., De Vignemont, F., & Schutter, D. J. L. G. (2009c). Is this hand for real? Attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. Journal of Cognitive Neuroscience, 21(7), 1311–1320. doi:10.1162/jocn.2009.21095.

    Article  PubMed  Google Scholar 

  • Kording, K., & Wolpert, D. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244.

    Article  PubMed  Google Scholar 

  • Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129.

    Article  PubMed  Google Scholar 

  • Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O. (2007). Video ergo sum: Manipulating bodily self-consciousness. Science, 317(5841), 1096.

    Article  PubMed  Google Scholar 

  • Longo, M. R., Schüür, F., Kammers, M. P. M., Tsakiris, M., & Haggard, P. (2008). What is embodiment? A psychometric approach. Cognition, 107(3), 978–998.

    Article  PubMed  Google Scholar 

  • Makin, T. R., Holmes, N. P., & Ehrsson, H. H. (2008). On the other hand: Dummy hands and peripersonal space. Behavioural Brain Research, 191(1), 1–10.

    Article  PubMed  Google Scholar 

  • Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 393–403.

    Article  PubMed  Google Scholar 

  • Masterton, B. A., & Biederman, G. B. (1983). Proprioceptive versus visual control in autistic children. Journal of Autism and Developmental Disorders, 13(2), 141–152. doi:10.1007/bf01531815.

    Article  PubMed  Google Scholar 

  • Moseley, G. L., Gallace, A., & Spence, C. (2012). Bodily illusions in health and disease: Physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neuroscience & Biobehavioral Reviews, 36(1), 34–46. doi:10.1016/j.neubiorev.2011.03.013.

  • Moseley, G. L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., et al. (2008). Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proceedings of the National Academy of Sciences, 105(35), 13169–13173. doi:10.1073/pnas.0803768105.

    Article  Google Scholar 

  • Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.

    Article  PubMed  Google Scholar 

  • Mussap, A. J., & Salton, N. (2006). A ‘rubber-hand’ illusion reveals a relationship between perceptual body image and unhealthy body change. Journal of Health Psychology, 11(4), 627–639. doi:10.1177/1359105306065022.

    Article  PubMed  Google Scholar 

  • Nayate, A., Bradshaw, J. L., & Rinehart, N. J. (2005). Autism and Asperger’s disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Research Bulletin, 67(4), 327–334. doi:10.1016/j.brainresbull.2005.07.011.

    Article  PubMed  Google Scholar 

  • Nazarali, N., Glazebrook, C., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39(10), 1401–1411. doi:10.1007/s10803-009-0756-x.

    Article  PubMed  Google Scholar 

  • Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190–198. doi:10.1016/j.cogbrainres.2005.01.014.

    Article  PubMed  Google Scholar 

  • Peled, A., Pressman, A., Geva, A. B., & Modai, I. (2003). Somatosensory evoked potentials during a rubber-hand illusion in schizophrenia. Schizophrenia Research, 64(2–3), 157–163. doi:10.1016/S0920-9964(03)00057-4.

    Article  PubMed  Google Scholar 

  • Peled, A., Ritsner, M., Hirschmann, S., Geva, A. B., & Modai, I. (2000). Touch feel illusion in schizophrenic patients. Biological Psychiatry, 48(11), 1105–1108.

    Article  PubMed  Google Scholar 

  • Petkova, V. I., & Ehrsson, H. H. (2008). If I were you: Perceptual illusion of body swapping. PLoS ONE, 3(12), e3832.

    Article  PubMed  Google Scholar 

  • Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences, 95(3), 869–875.

    Article  Google Scholar 

  • Rinehart, N., Bradshaw, J., Brereton, A., & Tonge, B. (2001). Movement preparation in high-functioning autism and Asperger disorder: A serial choice reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31(1), 79–88. doi:10.1023/a:1005617831035.

    Article  PubMed  Google Scholar 

  • Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., Iansek, R., Enticott, P. G., & Johnson, K. A. (2006). Movement-related potentials in high-functioning autism and Asperger’s disorder. Developmental Medicine and Child Neurology, 48(4), 272–277. doi:10.1017/s0012162206000594.

    Article  PubMed  Google Scholar 

  • Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63(2), 164–172. doi:10.1016/j.ijpsycho.2006.03.012.

    Article  PubMed  Google Scholar 

  • Rogers, S. J., Cook, I., & Meryl, A. (2005). Imitation and play in autism. In F. R. Volkmar, R. Paul, A. Klin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (3rd ed., pp. 382–405). Hoboken, NJ: Wiley.

    Google Scholar 

  • Rogers, S. J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255–1268. doi:10.1111/j.1469-7610.2005.01431.x.

    Article  PubMed  Google Scholar 

  • Rohde, M., Di Luca, M., & Ernst, M. O. (2011). The rubber hand illusion: Feeling of ownership and proprioceptive drift do not go hand in hand. PloS One, 6(6), e21659.

    Article  PubMed  Google Scholar 

  • Ropar, D., & Mitchell, P. (1999). Are individuals with autism and Asperger’s syndrome susceptible to visual illusions? Journal of Child Psychology and Psychiatry, 40(8), 1283–1293. doi:10.1111/1469-7610.00544.

    Article  PubMed  Google Scholar 

  • Ropar, D., & Mitchell, P. (2001). Susceptibility to illusions and performance on visuospatial tasks in individuals with autism. Journal of Child Psychology and Psychiatry, 42(4), 539–549. doi:10.1111/1469-7610.00748.

    Article  PubMed  Google Scholar 

  • Ropar, D., & Mitchell, P. (2002). Shape constancy in autism: The role of prior knowledge and perspective cues. Journal of Child Psychology and Psychiatry, 43(5), 647–653. doi:10.1111/1469-7610.00053.

    Article  PubMed  Google Scholar 

  • Rossetti, Y., Desmurget, M., & Prablanc, C. (1995). Vectorial coding of movement: Vision, proprioception, or both? Journal of Neurophysiology, 74(1), 457–463.

    PubMed  Google Scholar 

  • Schwabe, L., & Blanke, O. (2008). The vestibular component in out-of-body experiences: a computational approach. Frontiers in Human Neuroscience, 2(Article 17), 1–10.

    Google Scholar 

  • Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739. doi:10.1016/j.visres.2009.08.005.

    Article  PubMed  Google Scholar 

  • Smith, E. G., & Bennetto, L. (2007). Audiovisual speech integration and lipreading in autism. Journal of Child Psychology and Psychiatry, 48(8), 813–821. doi:10.1111/j.1469-7610.2007.01766.x.

    Article  PubMed  Google Scholar 

  • Sober, S. J., & Sabes, P. N. (2003). Multisensory integration during motor planning. The Journal of Neuroscience, 23(18), 6982–6992.

    PubMed  Google Scholar 

  • Sober, S. J., & Sabes, P. N. (2005). Flexible strategies for sensory integration during motor planning. Nature Neuroscience, 8, 490–497.

    PubMed  Google Scholar 

  • Théoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-Flusberg, H., & Pascual-Leone, A. (2005). Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Current Biology, 15(3), R84–R85.

    Article  PubMed  Google Scholar 

  • Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia, 48(3), 703–712. doi:10.1016/j.neuropsychologia.2009.09.034.

    Article  PubMed  Google Scholar 

  • Tsakiris, M., Carpenter, L., James, D., & Fotopoulou, A. (2010). Hands only illusion: multisensory integration elicits sense of ownership for body parts but not for non-corporeal objects. Experimental Brain Research, 204(3), 343–352. doi:10.1007/s00221-009-2039-3.

    Article  Google Scholar 

  • Tsakiris, M., & Haggard, P. (2005). The rubber hand illusion revisited: Visuotactile integration and self-attribution. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 80–91.

    Article  PubMed  Google Scholar 

  • van Beers, R. J., Sittig, A. C., & van der Gon, J. J. D. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.

    PubMed  Google Scholar 

  • van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12(10), 834–837. doi:10.1016/S0960-9822(02)00836-9.

    Article  PubMed  Google Scholar 

  • Walter, E., Dassonville, P., & Bochsler, T. (2009). A specific autistic trait that modulates visuospatial illusion susceptibility. Journal of Autism and Developmental Disorders, 39(2), 339–349. doi:10.1007/s10803-008-0630-2.

    Article  PubMed  Google Scholar 

  • Wann, J. P., & Ibrahim, S. F. (1992). Does limb proprioception drift? Experimental Brain Research, 91(1), 162–166. doi:10.1007/bf00230024.

    Article  Google Scholar 

  • Williams, J. H. G., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287–295. doi:10.1016/S0149-7634(01)00014-8.

    Article  PubMed  Google Scholar 

  • Zopf, R., Truong, S., Finkbeiner, M., Friedman, J., & Williams, M. A. (2011). Viewing and feeling touch modulates hand position for reaching. Neuropsychologia, 49(5), 1287–1293. doi:10.1016/j.neuropsychologia.2011.02.012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Australian Research Council Grants DP0984572 and FT100100322, and a Monash University Research Accelerator Grant to JH; PGE is supported by a National Health and Medical Research Council Clinical Research Fellowship (546244). The authors wish to thank Amity Green for assistance with data collection and Uta Frith for helpful advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Hohwy.

Electronic supplementary material

Appendix: Supplementary Results

Appendix: Supplementary Results

Item (Rubber Hand vs. Cardboard Box)

There was a main effect of this factor, F(1, 32) = 39.53, p < .01, a two-way interaction with participant group F(1, 32) = 4.92, p = .03, and a three way interaction with stimulation (manual/machine touch) F(1, 32) = 4.36, p = .05.

This interaction was explored in separate two way repeated measures ANOVAs for controls and ASD respectively. For control participants, as expected, there was a main effect for the item factor, F(1, 16) = 28.24, p < .01, Cohen’s d = .72, such that they rated the illusion stronger when they observed the touch performed on a rubber hand (M = 36.57, SD = 15.07) than when the touch was done on a cardboard box (M = 25.32, SD = 16.23). The ASD group also had a main effect of this factor, F(1, 16) = 11.51, p < .01, Cohen’s d = .27, such that they rated the illusion somewhat stronger when touch was done on the rubber hand (M = 33.11, SD = 20.65) than when there was touch on the cardboard box (M = 27.73, SD = 19.17).

In addition, in the ANOVAs for both groups there was a main effect of stimulation. For controls, F(1, 16) = 4.60, p = .05, Cohen’s d = .15, suggesting controls rated manual touch somewhat higher (M = 32.08, SD = 14.58) than touch by the machine (M = 29.87, SD = 15.74). For ASD participants, F(1, 16) = 4.91, p < .04, Cohen’s d = .13, suggesting the ASD participants rated manual touch somewhat higher (M = 31.70, SD = 20.46) than touch by the machine (M = 29.15, SD = 19.11).

Stimulation (Manual Touch vs. Machine Touch)

There was the expected main effect of this factor F(1, 32) = 9.48, p < .01, with participants rating manual touch somewhat higher (M = 31.82, SD = 17.77) than machine touch (M = 29.51, SD = 17.50), Cohen’s d = 0.13. There was a two-way interaction of this factor with the three-level statement factor F(2, 64) = 4.28, p = .22. Post hoc analysis revealed that this interaction was mainly due to differences in responses to S1, t(33) = 3.09, p < .01, Cohen’s d = .22, with responses to this statement being higher during human touch (M = 41.10, SD = 23.47) than during machine touch (M = 36.17, SD = 21.32). Differences in responses to S2 and S3 did not reach significance after correction for multiple comparisons.

Reach Trial: Further Analysis

Two further main effects were found for the full 5 s period. There was a main effect for goggles, F(1,32) = 4.66, p = .04, Cohen’s d = .42. Participants reached with more acceleration with goggles (M = 264.66, SD = 41.22) than without goggles (M = 249.01, SD = 32.84). A main effect here is to be expected since there is a difference between seeing the cylindrical target object on the screen in the goggles vs. seeing it without goggles and reach movement would reflect this difference. A main effect was also found for the item factor, F(1,32) = 5.23, p = .03, Cohen’s d = .13. Participants’ reaching acceleration was somewhat stronger when viewing the box (M = 258.67, SD = 30.47) than the rubber hand (M = 255.04, SD = 31.68). This may indicate that they were somehow influenced by the rubber hand and compensated for the size of it in their reaching and/or wrist movement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paton, B., Hohwy, J. & Enticott, P.G. The Rubber Hand Illusion Reveals Proprioceptive and Sensorimotor Differences in Autism Spectrum Disorders. J Autism Dev Disord 42, 1870–1883 (2012). https://doi.org/10.1007/s10803-011-1430-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-011-1430-7

Keywords

Navigation