Skip to main content
Log in

Optimizing Dvl PDZ domain inhibitor by exploring chemical space

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Because of advances in the high-throughput screening technology, identification of a hit that can bind to a target protein has become a relatively easy task; however, in the process of drug discovery, the following hit-to-lead and lead optimization still remain challenging. In a typical hit-to-lead and lead optimization process, the analogues of the most promising hits are synthesized for the development of structure–activity relationship (SAR) analysis, and in turn, in the effort of optimization of lead compounds, such analysis provides guidance for the further synthesis. The synthesis processes are usually long and labor-intensive. In silico searching has becoming an alternative approach to explore SAR especially with millions of compounds ready to be screened and most of them can be easily obtained. Here, we report our discovery of 15 new Dishevelled PDZ domain inhibitors by using such an approach. In our studies, we first developed a pharmacophore model based on NSC668036, an inhibitor previously identified in our laboratory; based on the model, we then screened the ChemDiv database by using an algorithm that combines similarity search and docking procedures; finally, we selected potent inhibitors based on docking analysis and examined them by using NMR spectroscopy. NMR experiments showed that all the 15 compounds we chose bound to the PDZ domain tighter than NSC668036.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Dvl:

Dishevelled

HSQC:

Heteronuclear single quantum coherence

NCI:

National Cancer Institute

NMR:

Nuclear magnetic resonance

PDZ:

Post-synaptic density-95/discs large/zonula occludens-1

SAR:

Structure–activity relationship

References

  1. Burbaum J, Sigal N (1997) Curr Opin Chem Biol 1:72. doi:10.1016/S1367-5931(97)80111-1

    Article  CAS  Google Scholar 

  2. Liu B, Li S, Hu J (2004) Am J Pharmacogenomics 4:263. doi:10.2165/00129785-200404040-00006

    Article  CAS  Google Scholar 

  3. Bleicher K, Böhm H, Müller K, Alanine A (2003) Nat Rev Drug Discov 2:369. doi:10.1038/nrd1086

    Article  CAS  Google Scholar 

  4. Keseru G, Makara G (2006) Drug Discov Today 11:741. doi:10.1016/j.drudis.2006.06.016

    Article  Google Scholar 

  5. Irwin J, Shoichet B (2005) J Chem Inf Model 45:177. doi:10.1021/ci049714+

    Article  CAS  Google Scholar 

  6. Hann M, Oprea T (2004) Curr Opin Chem Biol 8:255. doi:10.1016/j.cbpa.2004.04.003

    Article  CAS  Google Scholar 

  7. Shan J, Shi D, Wang J, Zheng J (2005) Biochemistry 44:15495. doi:10.1021/bi0512602

    Article  CAS  Google Scholar 

  8. Dev K (2004) Nat Rev Drug Discov 3:1047. doi:10.1038/nrd1578

    Article  CAS  Google Scholar 

  9. Fry D, Vassilev L (2005) J Mol Med 83:955. doi:10.1007/s00109-005-0705-x

    Article  CAS  Google Scholar 

  10. Fujii N, Haresco J, Novak K, Stokoe D, Kuntz I, Guy R (2003) J Am Chem Soc 125:12074. doi:10.1021/ja035540l

    Article  CAS  Google Scholar 

  11. Fujii N, You L, Xu Z, Uematsu K, Shan J, He B et al (2007) Cancer Res 67:573. doi:10.1158/0008-5472.CAN-06-2726

    Article  CAS  Google Scholar 

  12. Joshi M, Vargas C, Boisguerin P, Diehl A, Krause G, Schmieder P et al (2006) Angew Chem Int Ed Engl 45:3790. doi:10.1002/anie.200503965

    Article  CAS  Google Scholar 

  13. Barker N, Clevers H (2006) Nat Rev Drug Discov 5:997. doi:10.1038/nrd2154

    Article  CAS  Google Scholar 

  14. Wolber G, Langer T (2005) J Chem Inf Model 45:160. doi:10.1021/ci049885e

    Article  CAS  Google Scholar 

  15. Cheyette B, Waxman J, Miller J, Takemaru K, Sheldahl L, Khlebtsova N et al (2002) Dev Cell 2:449. doi:10.1016/S1534-5807(02)00140-5

    Article  CAS  Google Scholar 

  16. Kramer B, Rarey M, Lengauer T (1999) Proteins 37:228. doi:10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8

    Article  CAS  Google Scholar 

  17. Friesner R, Banks J, Murphy R, Halgren T, Klicic J, Mainz D et al (2004) J Med Chem 47:1739. doi:10.1021/jm0306430

    Article  CAS  Google Scholar 

  18. London T, Lee H, Shao Y, Zheng J (2004) Biochem Biophys Res Commun 322:326. doi:10.1016/j.bbrc.2004.07.113

    Article  CAS  Google Scholar 

  19. Wong H, Bourdelas A, Krauss A, Lee H, Shao Y, Wu D et al (2003) Mol Cell 12:1251. doi:10.1016/S1097-2765(03)00427-1

    Article  CAS  Google Scholar 

  20. Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277. doi:10.1007/BF00197809

    Article  CAS  Google Scholar 

  21. Goddard TD, Kneller DG, SPARKY 3. University of California, San Francisco. http://www.cgl.ucsf.edu/home/sparky/

  22. Worrall J, Reinle W, Bernhardt R, Ubbink M (2003) Biochemistry 42:7068. doi:10.1021/bi0342968

    Article  CAS  Google Scholar 

  23. Gund P (1977) Prog Mol Subcell Biol 5:17

    Google Scholar 

  24. Guner OF (2000) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla

    Google Scholar 

  25. Langer T, Hoffmann RD (2006) Pharmacophores and pharmacophore searches. Wiley-VCH, Weinheim

    Google Scholar 

  26. Zerbe O (2003) BioNMR in drug research (methods and principles in medicinal chemistry), vol 16. Wiley-VCH, Weinheim

    Google Scholar 

  27. Hammond M, Harris B, Lim W, Bartlett P (2006) Chem Biol 13:1247. doi:10.1016/j.chembiol.2006.11.010

    Article  CAS  Google Scholar 

  28. Wallace A, Laskowski R, Thornton J (1995) Protein Eng 8:127. doi:10.1093/protein/8.2.127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Protein Production Facility at St. Jude Children’s Research Hospital and Dr. Ho-Jin Lee, Youming Shao for producing proteins, Dr. Weixing Zhang for his assistance with NMR experiments, Dr. Charles Ross and Scott Malone for their computer support. This work is supported by grants CA21765 and GM061739. We are grateful to the American Heart Association for a Predoctoral Fellowship to J. Shan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie J. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, J., Zheng, J.J. Optimizing Dvl PDZ domain inhibitor by exploring chemical space. J Comput Aided Mol Des 23, 37–47 (2009). https://doi.org/10.1007/s10822-008-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9236-1

Keywords

Navigation