Skip to main content
Log in

Balance between noise and adaptation in competition models of perceptual bistability

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Perceptual bistability occurs when a physical stimulus gives rise to two distinct interpretations that alternate irregularly. Noise and adaptation processes are two possible mechanisms for switching in neuronal competition models that describe the alternating behaviors. Either of these processes, if strong enough, could alone cause the alternations in dominance. We examined their relative role in producing alternations by studying models where by smoothly varying the parameters, one can change the rhythmogenesis mechanism from being adaptation-driven to noise-driven. In consideration of the experimental constraints on the statistics of the alternations (mean and shape of the dominance duration distribution and correlations between successive durations) we ask whether we can rule out one of the mechanisms. We conclude that in order to comply with the observed mean of the dominance durations and their coefficient of variation, the models must operate within a balance between the noise and adaptation strength—both mechanisms are involved in producing alternations, in such a way that the system operates near the boundary between being adaptation-driven and noise-driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220–224

    Article  PubMed  CAS  Google Scholar 

  • Amit, D. J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.

    Article  PubMed  CAS  Google Scholar 

  • Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review, 96, 145–167.

    Article  PubMed  CAS  Google Scholar 

  • Blake, R. (2001). A primer on binocular rivalry. Brain and Mind, 2, 5–38.

    Article  Google Scholar 

  • Brunel, N., & Sergi, S. (1998). Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics. Journal of Theoretical Biology, 195(1), 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Buice, M. A., & Chow, C. C. (2007). Correlations, fluctuations, and stability of a finite-size network of coupled oscillators. Physical Review E, 76, 031118.

    Article  CAS  Google Scholar 

  • Curtu, R., Shpiro, A., Rubin, N., & Rinzel, J. (2008). Mechanisms for frequency control in neuronal competition models. SIAM Journal on Applied Dynamical Systems, 7(2), 609–649.

    Article  Google Scholar 

  • Descalzo, V. F., Nowak, L. G., Brumberg, J. C., McCormick, D. A., & Sanchez-Vives, M. V. (2005). Slow adaptation in fast-spiking neurons of visual cortex. Journal of Neurophysiology, 93(2), 1111–8.

    Article  PubMed  CAS  Google Scholar 

  • Fox, R., & Herrmann, J. (1967). Stochastic properties of binocular rivalry alterations. Perception and Psychophysics, 2, 432–436.

    Google Scholar 

  • Freeman, A. W. (2005). Multistage model for binocular rivalry. Journal of Neurophysiology, 94, 4412–4420.

    Article  PubMed  Google Scholar 

  • Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 217–257.

    Google Scholar 

  • Guckenheimer, J., & Holmes, P. (2002). Nonlinear oscillations, dynamical systems, and bifurcations of vector field. New York: Springer.

    Google Scholar 

  • Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065.

    Article  PubMed  CAS  Google Scholar 

  • Haken, H. (1994). A brain model for vision in terms of synergetics. Journal of Theoretical Biology, 171, 75–85.

    Article  Google Scholar 

  • Haynes, J. D., Deichmann, R., & Rees, G. (2005). Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature, 438, 496–499.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood City: Addison-Wesley.

    Google Scholar 

  • Hupe, J. M., & Rubin, N. (2003). The dynamics of bistable alternation in ambiguous motion displays: A fresh look at plaids. Vision Research, 43, 531–548.

    Article  PubMed  Google Scholar 

  • Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.

    Google Scholar 

  • Kalarickal, G. J., & Marshall, J. A. (2000). Neural model of temporal and stochastic properties of binocular rivalry. Neurocomputing, 32–33, 843–853.

    Article  Google Scholar 

  • Kim, Y. J., Grabowecky, M., & Suzuki, S. (2006). Stochastic resonance in binocular rivalry. Vision Research, 46, 392–406.

    Article  PubMed  Google Scholar 

  • Kramers, H. A. (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284–304.

    Article  CAS  Google Scholar 

  • Lago-Fernandez, L. F., & Deco, G. (2002). A model of binocular rivalry based on competition in IT. Neurocomputing, 44, 503–507.

    Article  Google Scholar 

  • Laing, C. R., & Chow, C. C. (2002). A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 12, 39–53.

    Article  PubMed  Google Scholar 

  • Lehky, S. R. (1988). An astable multivibrator model of binocular rivalry. Perception, 17, 215–228.

    Article  PubMed  CAS  Google Scholar 

  • Lehky, S. R. (1995). Binocular rivalry is not chaotic. Proceedings: Biological Sciences, 259(1354), 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Leopold, D. A., & Logothetis, N. K. (1996). Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature, 379, 549-554.

    Article  PubMed  CAS  Google Scholar 

  • Levelt, W. J. M. (1968). On binocular rivalry. The Hague: Mouton.

    Google Scholar 

  • Logothetis, N. K. (1998). A primer on binocular rivalry, including current controversies. Philosophical Transactions of the Royal Society of London, B, 353, 1801–1818.

    Article  CAS  Google Scholar 

  • Logothetis, N. K., Leopold, D. A., & Sheinberg, D. L. (1996). What is rivaling during binocular rivalry? Nature, 380, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Mattia, M., & Del Giudice, P. (2002). Population dynamics of interacting spiking neurons. Physical Review E, 66, 051917.

    Article  CAS  Google Scholar 

  • McClave, J., & Sincich, T. (2006). Statistics, 10th ed., section 8.3. Englewood Cliffs: Pearson Prentice Hall.

    Google Scholar 

  • Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, 539–551.

    Article  PubMed  Google Scholar 

  • Moldakarimov, S., Rollenhagen, J. E., Olson, C. R., & Chow, C. C. (2005). Competitive dynamics in cortical responses to visual stimuli. Journal of Neurophysiology, 94, 3388–3396.

    Article  PubMed  Google Scholar 

  • Moreno-Bote, R., & Parga, N. (2004). Role of synaptic filtering on the firing response of simple model neurons. Physical Reviews Letters, 92, 0281021–0281024.

    Google Scholar 

  • Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.

    Article  PubMed  Google Scholar 

  • Moreno-Bote, R., Shpiro. A., Rinzel, J., & Rubin, N. (2008). Bi-stable depth ordering of superimposed moving grating. Journal of Vision, 8(7), 20, 1–13.

    Article  PubMed  Google Scholar 

  • Mueller, T. J., & Blake, R. (1989). A fresh look at the temporal dynamics of binocular rivalry. Biological Cybernetics, 61, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Necker, L. A. (1832). Observations on some remarkable phenomenon which occurs on viewing a figure of a crystal of geometrical solid. London and Edinburgh Philosophical Magazine and Journal of Science, 3, 329–337.

    Google Scholar 

  • Riani, M., & Simonotto, E. (1994). Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model. Physical Reviews Letters, 72, 3120–3123.

    Article  Google Scholar 

  • Ricciardi, L. M. (1977). Diffusion processes and related topics in biology. Berlin: Springer.

    Google Scholar 

  • Risken, H. (1989). The Fokker-Planck equation. Berlin: Springer.

    Google Scholar 

  • Rubin, E. (1921). Visuellwahrgenommene Figuren, Gyldendals, Copenhagen. Partial version in English in: Rubin, E. (2001). Figure and ground. In S. Yantis (Ed.), Visual perception: Essential readings. Hove: Psychology Press.

  • Rubin, N., & Hupe, J. M. (2004). Dynamics of perceptual bistability: Plaids and binocular rivalry compared. In: D. Alais, & R. Blake (Eds.), Binocular rivalry. Cambridge: MIT.

    Google Scholar 

  • Salinas, E. (2003). Background synaptic activity as a switch between dynamical states in a network. Neural Computation, 15(7), 1439–1475.

    Article  PubMed  Google Scholar 

  • Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.

    Article  PubMed  Google Scholar 

  • Soula, H., & Chow, C. C. (2007). Stochastic dynamics of a finite-size spiking neural network. Neural Computation, 19(12), 3262–3292.

    Article  PubMed  Google Scholar 

  • Stollenwerk, L., & Bode, M. (2003). Lateral neural model of binocular rivalry. Neural Computation, 15, 2863–2882.

    Article  PubMed  Google Scholar 

  • Tong, F. (2001). Competing theories of binocular rivalry. Brain and Mind, 2, 55–83.

    Article  Google Scholar 

  • van Dam, L., Mulder, R., Noest, A., Brascamp, J., van den Berg, B., & van Ee, R. (2007). Sequential dependency in percept durations for binocular rivalry. (Abstract). Journal of Vision, 7(9), 53,53a.

    Google Scholar 

  • van Kampen, N. G. (2001). Stochastic processes in physics and chemistry. Amsterdam: North Holland.

    Google Scholar 

  • Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbot, L. F., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17, 7926.

    PubMed  CAS  Google Scholar 

  • Wallach, H. (1935). Uber visuell wahrgenommene Bewegungsrichtung. Psychologische Forschung, 20, 325–380. [English translation in: Wuerger, S., et al. (1996). ’On the visually perceived direction of motion’ by Hans Wallach: 60 years later. Perception, 25, 1317–1367].

    Article  Google Scholar 

  • Wang, X.-J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.

    Article  Google Scholar 

  • Wheatstone, C. (1838). Contributions to the physiology of vision. Part I: On some remarkable, and hitherto unobserved, phenomena of binocular vision. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 43, 241–267.

    Google Scholar 

  • Wilson, H. R. (2003). Computational evidence for a rivalry hierarchy in vision. Proceeding of the National Academy of Sciences USA, 100, 14499–14503.

    Article  CAS  Google Scholar 

  • Wilson, H. R. (2007). Minimal physiological conditions for binocular rivalry and rivalry memory. Vision Research, 47(21), 2741–2750.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y. H., Gao, J. B., White, K. D., Merk, I., & Yao, K. (2004). Perceptual dominance time distributions in multistable visual perception. Biological Cybernetics, 90(4), 256–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asya Shpiro.

Additional information

Action Editor: Misha Tsodyks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpiro, A., Moreno-Bote, R., Rubin, N. et al. Balance between noise and adaptation in competition models of perceptual bistability. J Comput Neurosci 27, 37–54 (2009). https://doi.org/10.1007/s10827-008-0125-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0125-3

Keywords

Navigation