Skip to main content
Log in

The variance of phase-resetting curves

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Phase resetting curves (PRCs) provide a measure of the sensitivity of oscillators to perturbations. In a noisy environment, these curves are themselves very noisy. Using perturbation theory, we compute the mean and the variance for PRCs for arbitrary limit cycle oscillators when the noise is small. Phase resetting curves and phase dependent variance are fit to experimental data and the variance is computed using an ad-hoc method. The theoretical curves of this phase dependent method match both simulations and experimental data significantly better than an ad-hoc method. A dual cell network simulation is compared to predictions using the analytical phase dependent variance estimation presented in this paper. We also discuss how entrainment of a neuron to a periodic pulse depends on the noise amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abouzeid, A., & Ermentrout, B. (2009). Type-ii phase resetting curve is optimal for stochastic synchrony. Physical Review E, 80, 011911.

    Article  Google Scholar 

  • Achuthan, S., & Canavier, C. C. (2009). Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29(16), 5218–5233.

    Article  PubMed  CAS  Google Scholar 

  • Ariaratnam, J. T., & Strogatz, S. H. (2001). Phase diagram for the winfree model of coupled nonlinear oscillators. Physical Review Letters, 86, 4278–4281.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16, 673–715.

    Article  PubMed  Google Scholar 

  • Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering, 29, 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, B., & Saunders, D. (2006). Phase resetting and coupling of noisy neural oscillators. Journal of Computational Neuroscience, 20, 179–190.

    Article  PubMed  Google Scholar 

  • Forger, D. B., & Paydarfar, D. (2004). Starting, stopping, and resetting biological oscillators: In search of optimum perturbations. Journal of Theoretical Biology, 230, 521–532.

    Article  PubMed  Google Scholar 

  • Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letters, 94, 158101.

    Article  PubMed  Google Scholar 

  • Gardiner, C. W. (2004). Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer Series in Synergetics (Vol. 13). Berlin: Springer.

    Google Scholar 

  • Goel, P., & Ermentrout, B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163(3), 191–216.

    Article  Google Scholar 

  • Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: Computational and experimental study. Journal of Neurophysiology, 78, 1199–1211.

    PubMed  CAS  Google Scholar 

  • Guevara, M. R., & Glass, L. (1982). Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. Journal of Mathematical Biology, 14, 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J. J., & Stocker, H. (1998). Handbook of mathematics and computational science. New York: Springer.

    Book  Google Scholar 

  • Ito, K. (1946). On a stochastic integral equation. Proceedings of the Japan Academy, 22, 32–35.

    Article  Google Scholar 

  • Kloeden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Applications of Mathematics (New York) (Vol. 23). Berlin: Springer.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Dover Publications.

  • Ly, C., & Ermentrout, G. B. (2009). Synchronization dynamics of two coupled neural oscillators receiving shared and unshared noisy stimuli. Journal of Computational Neuroscience, 26, 425–443.

    Article  PubMed  Google Scholar 

  • Ly, C., & Ermentrout, G. B. (2010). Coupling regularizes individual units in noisy populations. Physical Review E, 81, 11911.

    Article  Google Scholar 

  • Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005a). Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18, 287–295.

    Article  PubMed  Google Scholar 

  • Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005b). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.

    Article  PubMed  Google Scholar 

  • Neu, J. C. (1979). Coupled chemical oscillators. SIAM Journal on Applied Mathematics, 37(2), 307–315.

    Article  Google Scholar 

  • Pervouchine, D. D., Netoff, T. I., Rotstein, H. G., White, J. A., Cunningham, M. O., Whittington, M. A., et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural Computation, 18, 2617–2650.

    Article  PubMed  Google Scholar 

  • Plackett, R. L. (1983). Karl pearson and the chi-squared test. International Statistical Review, 51, 59–72.

    Article  Google Scholar 

  • Preyer, A., & Butera, R. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95(13), 138103.

    Article  PubMed  Google Scholar 

  • Reyes, A. D., & Fetz, E. E. (1993). Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. Journal of Neurophysiology, 69, 1673–1683.

    PubMed  CAS  Google Scholar 

  • Stoop, R., Schindler, K., & Bunimovich, L. A. (2000). Neocortical networks of pyramidal neurons: From local locking and chaos to macroscopic chaos and synchronization. Nonlinearity, 13, 1515–1529.

    Article  Google Scholar 

  • Torben-Nielsen, B., Uusisaari, M., & Stiefel, K. (2010). A comparison of methods to determine neuronal phase-response curves. Frontiers in Neuroinformatics, 4(6).

  • Welch, B. L. (1947). The generalization of student’s problem when several different population variances are involved. Biometrika, 34, 28–35.

    PubMed  CAS  Google Scholar 

  • Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology, 16, 15–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge NSF, NSF CAREER Award, and University of Minnesota Grant-in-Aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theoden I. Netoff.

Additional information

Action Editor: Charles Wilson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermentrout, G.B., Beverlin, B., Troyer, T. et al. The variance of phase-resetting curves. J Comput Neurosci 31, 185–197 (2011). https://doi.org/10.1007/s10827-010-0305-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0305-9

Keywords

Navigation