Skip to main content
Log in

Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vimentin coiled-coil alpha-helical dimers are elementary protein building blocks of intermediate filaments, an important component of the cell’s cytoskeleton that has been shown to control the large-deformation behavior of eukaryotic cells. Here we use a combination of atomistic simulation and continuum theory to model tensile and bending deformation of single alpha-helices as well as coiled-coil double helices of the 2B segment of the vimentin dimer. We find that vimentin dimers can be extended to tensile strains up to 100% at forces below 50 pN, until strain hardening sets in with rapidly rising forces, approaching 8 nN at 200% strain. We systematically explore the differences between single alpha-helical structures and coiled-coil superhelical structures. Based on atomistic simulation, we discover a transition in deformation mechanism under varying pulling rates, resulting in different strength criteria for the unfolding force. Based on an extension of Bell’s theory that describes the dependence of the mechanical unfolding force on the pulling rate, we develop a fully atomistically informed continuum model of the mechanical properties of vimentin coiled-coils that is capable of predicting its nanomechanical behavior over a wide range of deformation rates that include experimental conditions. This model enables us to describe the mechanics of cyclic stretching experiments, suggesting a hysteresis in the force–strain response, leading to energy dissipation as the protein undergoes repeated tensile loading. We find that the dissipated energy increases continuously with increasing pulling rate. Our atomistic and continuum results help to interpret experimental studies that have provided evidence for the significnificance of vimentin intermediate filaments for the large-deformation regime of eukaryotic cells. We conclude that vimentin dimers are superelastic, highly dissipative protein assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alberts B et al (2002) In: Molecular biology of the cell. Taylor & Francis

  2. Strelkov SV, Herrmann H, Aebi U (2003) BioEssays 25:243

    Article  CAS  Google Scholar 

  3. Burkhard P, Kammerer RA, Steinmetz MO, Bourenkov GP, Aebi U (2000) Structure 8:223

    Article  CAS  Google Scholar 

  4. Herrmann H, Aebi U (2004) Annu Rev Biochem 73:749

    Article  CAS  Google Scholar 

  5. Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U, Burkhard P (2002) EMBO J 6:1255

    Article  Google Scholar 

  6. Kiss B, Karsai A, Kellermayer MSZ (2006) J Struct Biol 155:327

    Article  CAS  Google Scholar 

  7. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) J Cell Biol 113:155

    Article  CAS  Google Scholar 

  8. Mücke N, Wedig T, Bürer A, Marekov L, Steinert P, Langowski J, Aebi U, Herrmann H (2004) J Mol Biol 340:97

    Article  CAS  Google Scholar 

  9. Smith TA, Strelkov SV, Burkhard P, Aebi U, Parry DAD (2002) J Struct Biol 137:128

    Article  CAS  Google Scholar 

  10. Wilson KL, Zastrow MS, Lee KK (2001) Cell 104:647

    CAS  Google Scholar 

  11. Wang N, Stamenovic D (2003) J Muscle Res Cell Motil 23:535

    Article  Google Scholar 

  12. Mücke N, Kreplak L, Kirmse R, Wedig T, Herrmann H, Aebi U, Langowski J (2004) J Mol Biol 355:2342

    Google Scholar 

  13. Helfand BT, Chang L, Goldman RD (2004) J Cell Sci 117:133

    Article  CAS  Google Scholar 

  14. Smith TA, Hempstead PD, Palliser CC, Parry DAD (2003) Proteins 50:207

    Article  CAS  Google Scholar 

  15. Kreplak L, Aebi U, Herrmann H (2004) Exp Cell Res 301:77

    Article  CAS  Google Scholar 

  16. Strelkov SV, Schumacher J, Burkhard P, Aebi U, Herrmann H (2004) J Mol Biol 343:1067

    Article  CAS  Google Scholar 

  17. Moir RD, Spann TP (2001). Cell Mol Life Sci 58:1748

    Article  CAS  Google Scholar 

  18. Coulombe PA, Bousquet O, Ma L, Yamada S, Wirtz D (2000) Cell Biol 10:420

    CAS  Google Scholar 

  19. Fudge DS, Gosline JM (2004) Proc R Soc Lond 271:291

    Article  CAS  Google Scholar 

  20. Fudge DS, Gardner KH, Forsyth VT, Riekel C Gosline JM (2003) Biophys J 85:2015

    CAS  Google Scholar 

  21. Eckes B, Dogic D, Colucci-Guyon E, Wang N., Maniotis A, Ingber D (1998) J Cell Sci 111:1897

    CAS  Google Scholar 

  22. Brown MJ, Hallam JA, Colucci-Guyon E, Shaw S (2001) J Immunol 166:6640

    CAS  Google Scholar 

  23. Nieminen M, Henttinen T, Merinen M, Marttila- Ichihara F, Eriksson JE, Jalkanen S (2006) Nat Cell Biol 8:156

    Article  CAS  Google Scholar 

  24. Kreplak L, Bär H, Leterrier JF, Herrmann H, Aebi U (2005) J Mol Biol 354:569

    CAS  Google Scholar 

  25. Storm C., Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nature 435:191

    Article  CAS  Google Scholar 

  26. Guzmán C, Jeney S, Kreplak L, Kasas S, Kulik AJ, Aebi U, Forró L (2006) J Mol Biol 360:623

    Article  CAS  Google Scholar 

  27. Omary MB, Coulombe PA, Irwin McLean WH (2004) N Engl J Med 351:2087

    Article  CAS  Google Scholar 

  28. Schietke R, Broehl D, Wedig T, Muecke N, Herrmann H, Magin TM (2006) Eur J Cell Biol 85:1

    Article  CAS  Google Scholar 

  29. Schwaiger I, Sattler C, Hostetter D, Rief M (2002) Nat Mater 1:232

    Article  CAS  Google Scholar 

  30. Akkermans RL, Warren CPB (2004) Phil Trans R Soc Lond 362:1783

    Article  CAS  Google Scholar 

  31. Root DD, Yadavalli VK, Forbes JF, Wang K (2006) Biophys J 90:2852

    Article  CAS  Google Scholar 

  32. Cieplak M, Hoang TX, Robbins MO (2002) Proteins: Struct Funct Genet 49:104

    Article  CAS  Google Scholar 

  33. Rohs R, Etchebest C, Lavery R (1999) Biophys J 76:2760

    CAS  Google Scholar 

  34. Bornschloegl T, Rief M (2006) PRL 96:118102

    Article  CAS  Google Scholar 

  35. Mitsui J, Nakajima K, Arakawa H, Hara M, Ikai A (2000) Biochem Biophys Res Commun 272:55

    Article  CAS  Google Scholar 

  36. Hanke F, Kreuzer HJ (2006) Phys Rev 74:031909

    Google Scholar 

  37. Evan E, Ritchie K (1997) Biophys J 72:1541

    Google Scholar 

  38. Dudko OK, Hummer G, Szabo A (2006) PRL 96:108101

    Article  CAS  Google Scholar 

  39. Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) PNAS 103:7222

    Article  CAS  Google Scholar 

  40. Gilli P, Bertolasi V, Pretto L, Gilli G (2006) J Mol Struct 790:40

    Article  CAS  Google Scholar 

  41. Bell GI (1978) Science 200:618

    Article  CAS  Google Scholar 

  42. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Biophys J 75:662

    Article  CAS  Google Scholar 

  43. MacKerell AD et al (1998) J Phys Chem 102:3586

    CAS  Google Scholar 

  44. Courtney TH (1990) In: Mechanical behaviour of materials. McGraw-Hill

  45. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphs 14:33

    Article  CAS  Google Scholar 

  46. Sheu SY, Yang DY, Selzle HL, Schlag EW (2003) PNAS 100:12683

    Article  CAS  Google Scholar 

  47. Inoué S, Salmon ED (1995) Mol Biol Cell 6(12):1619

    Google Scholar 

  48. Papadopoulos P et al (2006) Biomacromolecules 7:618

    Article  CAS  Google Scholar 

  49. Buehler MJ, Wand SY (in press) Entropic elasticity controls nanomechanics of single tropocollagen molecules

  50. Buehler MJ (2007) J Mech Mater Struct (in print)

  51. Baker D (2000) Nature 405:39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TA acknowledges the support of the German National Academic Foundation and the Dr.-Juergen-Ulderup Foundation. This research was partly supported by the Army Research Office (ARO), grant number W911NF-06-1-0291, program officer Dr. Bruce LaMattina. We acknowledge fruitful discussions with Professor Harald Herrmann (University of Heidelberg, Germany) and Professor Laurent Kreplak (University of Basel, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackbarow, T., Buehler, M.J. Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J Mater Sci 42, 8771–8787 (2007). https://doi.org/10.1007/s10853-007-1719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1719-2

Keywords

Navigation