Skip to main content
Log in

Application of nanostructured porous silicon in the field of optics. A review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous silicon nanostructures have attracted a great deal of interest during the past few years, due to their many remarkable properties. The high-efficiency visible photo- and electro-luminescence of this material opened the way to the development of silicon-based optoelectronic devices fully compatible with standard industry processes. In addition to these luminescent properties, nanostructured porous silicon shows a variety of other interesting properties, including tunable refractive index, low light absorption in the visible, high internal surface, variable surface chemistry, or high chemical reactivity. All these properties, along with its ease of fabrication and the possibility of producing precisely controlled layered structures make this material adequate for its use in a wide range of fields, such as optics, micro- and optoelectronics, chemical sensing or biomedical applications, for example. This article reviews the applications of nanostructured porous silicon that exploit its unique optical properties, as in the case of light emitting devices, filtered photodetectors, optical sensors, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Canham LT (1990) Appl Phys Lett 57(10):1046

    Article  CAS  ADS  Google Scholar 

  2. Halimaoui A, Oules C, Bromchil G, Bsiesy A, Gaspard F, Herino R, Ligeon M, Muller F (1991) Appl Phys Lett 59(3):304

    Article  CAS  ADS  Google Scholar 

  3. Koshida N, Koyama H (1992) Appl Phys Lett 60(3):347

    Article  CAS  ADS  Google Scholar 

  4. ISI Web of Knowledge (http://www.isiknowledge.com), accessed on September 2009

  5. Uhlir A (1956) Bell Syst Technol J 35(2):333

    CAS  Google Scholar 

  6. Watanabe Y, Sakai T (1971) Rev Electron Commun Labs 19(7–8):899

    Google Scholar 

  7. Otoi F, Anzai K, Kitabayashi H, Uchiho K, Mizokami Y (1984) J Electrochem Soc 131(8):C319

    Google Scholar 

  8. Turner DR (1958) J Electrochem Soc 105(7):402

    Article  CAS  Google Scholar 

  9. Archer RJ (1960) J Phys Chem Solids 14:104

    Article  CAS  ADS  Google Scholar 

  10. Hummel RE, Chang SS (1992) Appl Phys Lett 61(16):1965

    Article  CAS  ADS  Google Scholar 

  11. Saadoun M, Mliki N, Kaabi H, Daoudi K, Bessais B, Ezzaouia H, Bennaceur R (2002) Thin Solid Films 405(1–2):29

    Article  CAS  ADS  Google Scholar 

  12. Carstensen J, Christophersen M, Lolkes S, Ossei-Wusu E, Bahr J, Langa S, Popkirov G, Föll H (2005) Phys Stat Solid C 2(9):3339

    Article  CAS  Google Scholar 

  13. Rieger MM, Kohl PA (1995) J Electrochem Soc 142(5):1490

    Article  CAS  Google Scholar 

  14. Allongue P, Kieling V, Guerischer H (1995) Electrochim Acta 40(10):1353

    Article  CAS  Google Scholar 

  15. Rao AV, Ozanam F, Chazalviel JN (1991) J Electrochem Soc 138(1):153

    Article  CAS  Google Scholar 

  16. Gerischer H (1990) Electrochim Acta 35(11–12):1677

    Article  CAS  Google Scholar 

  17. Beale MIJ, Benjamin JD, Uren J, Chew NG, Cullis AG (1985) J Cryst Growth 73(3):622

    Article  CAS  ADS  Google Scholar 

  18. Smith RL, Collins SD (1992) J Appl Phys 71(8):R1

    Article  CAS  ADS  Google Scholar 

  19. Dittrich Th, Yu Timoshenko V, Rappich J (2001) J Appl Phys 90(5):2310

    Article  CAS  ADS  Google Scholar 

  20. Berger MG, Dieker C, Thönissen M, Vescan L, Lüth H, Münder H (1994) J Phys D 27(6):1333

    Article  CAS  ADS  Google Scholar 

  21. Frohnhoff St, Berger MG, Thömissen M, Dieker C, Vescan L, Münder H, Lüth H (1995) Thin Solid Films 255(1–2):59

    Article  CAS  ADS  Google Scholar 

  22. Steckl A, Xu J, Mogul H, Prokes S (1995) J Electrochem Soc 142:L69

    Article  Google Scholar 

  23. Torres-Costa V, Martín-Palma RJ, Manotas S, Agulló-Rueda F, Martínez-Duart JM (2004) Bol Soc Esp Cerám Vidrio 43(2):506

    Google Scholar 

  24. Theiss W (1997) Surf Sci Rep 29:91

    Article  CAS  ADS  Google Scholar 

  25. Lehmann V (2002) Electrochemistry of silicon. Instrumentation, science, materials and applications. Wiley-VCH, Weinheim

    Google Scholar 

  26. Labunov V, Bondarenko V, Glinenko L, Dorofeev A, Tabulina L (1986) Thin Solid Films 137:123

    Article  CAS  ADS  Google Scholar 

  27. Barla K, Bomchil G, Herino R, Pfister JC, Baruchel J (1984) J Cryst Growth 68:721

    Article  CAS  ADS  Google Scholar 

  28. Munder H, Andrzejak C, Berger MG, Klemradt U, Luth H, Hérino R, Ligeon M (1992) Thin Solid Films 221(1–2):27

    Article  ADS  Google Scholar 

  29. Bellet D, Dolino G (1996) Thin Solid Films 276:1

    Article  CAS  ADS  Google Scholar 

  30. Martín-Palma RJ, Pascual L, Herrero P, Martínez-Duart JM (2005) Appl Phys Lett 87:211906

    Article  ADS  Google Scholar 

  31. Campbell IH, Fauchet MP (1986) Solid State Commun 58:739

    Article  CAS  ADS  Google Scholar 

  32. Mariotto G, Ziglio F, Freire FL Jr (1995) J Non-Cryst Solids 192/193:253

    Article  Google Scholar 

  33. Manotas S, Agulló-Rueda F, Moreno JD, Martín-Palma RJ, Guerrero-Lemus R, Martínez-Duart JM (1999) Appl Phys Lett 75(7):977

    Article  CAS  ADS  Google Scholar 

  34. Sui Z, Leong PP, Herman IP, Higashi GS, Temkin H (1992) Appl Phys Lett 60(17):2086

    Article  CAS  ADS  Google Scholar 

  35. Munder H et al (1992) Thin Solid Films 22:27

    Article  ADS  Google Scholar 

  36. Frohnhoff St, Marso M, Berger MG, Thonissen M, Luth H, Mender H (1995) J Electrochem Soc 142(2):615

    Article  CAS  Google Scholar 

  37. Lehmann V, Jobst B, Muschik T, Kux A, Petrova-Koch V (1993) Jpn J Appl Phys 32(5):2095

    Article  CAS  ADS  Google Scholar 

  38. Cullis AG, Canham LT (1991) Nature 353:335

    Article  CAS  ADS  Google Scholar 

  39. Martín-Palma RJ, Pascual L, Landa A, Herrero P, Martínez-Duart JM (2004) Appl Phys Lett 85(13):2517

    Article  ADS  Google Scholar 

  40. Martín-Palma RJ, Pascual L, Herrero P, Martínez-Duart JM (2002) Appl Phys Lett 81(1):25

    Article  ADS  Google Scholar 

  41. Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MM (1997) Electron microscopy of thin crystals. Krieger, Melbourne

    Google Scholar 

  42. Torres-Costa V, Martın-Palma RJ, Pászti F, Climent-Font A, Martínez-Duart JM (2006) J Non-Cryst Solids 352(23–25):2521

    Article  CAS  ADS  Google Scholar 

  43. Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, London

    Google Scholar 

  44. Barla K, Hérino R, Bomchil G, Pfister JC, Freund A (1984) J Cryst Growth 68:727

    Article  CAS  ADS  Google Scholar 

  45. Buttard D, Bellet D, Dolino G (1996) J Appl Phys 79:8060

    Article  CAS  ADS  Google Scholar 

  46. Laiho R, Pavlov A, Pavlova Y (1997) Thin Solid Films 297:138

    Article  CAS  ADS  Google Scholar 

  47. Pavlov A, Pavlova Y (1997) Thin Solid Films 297:132

    Article  CAS  ADS  Google Scholar 

  48. Torres-Costa V (2006) PhD thesis, Universidad Autónoma de Madrid, Spain

  49. Davies H (1954) Proc Inst Electr Eng 101:209

    Google Scholar 

  50. Bennett HE, Porteus J (1960) J Opt Soc Am 51:123

    Article  MathSciNet  ADS  Google Scholar 

  51. Hecht E, Zajac A (1986) Óptica. Addison-Wesley Iberoamericana, Wilmington, p 86

    Google Scholar 

  52. Hilbrich S, Theiss W, Arens-Fischer R, Glück O, Berger MG (1996) Thin Solid Films 276:231

    Article  CAS  ADS  Google Scholar 

  53. Bruggeman DAG (1935) Ann Phys 24:636

    Article  CAS  Google Scholar 

  54. Looyenga H (1965) Physica (Amsterdam) 31:401

    Google Scholar 

  55. Bergman DJ (1978) Phys Rev C 43:377

    MathSciNet  Google Scholar 

  56. Pavesi L (1997) Riv Nuovo Cimento 20:1

    CAS  Google Scholar 

  57. Torres-Costa V, Martín-Palma RJ, Martínez-Duart JM (2004) Appl Phys A 79(8):1919

    Article  CAS  ADS  Google Scholar 

  58. Basmaji P, Bagnato VS, Grivickas V, Surdutovich GI, Vitlina R (1993) Thin Solid Films 233(1–2):131

    Article  CAS  ADS  Google Scholar 

  59. Zangooie S, Jansson R, Arwin H (1999) J Appl Phys 86(2):850

    Article  CAS  ADS  Google Scholar 

  60. Sagnez I, Halimaoui A, Vincent G, Badoz PA (1993) Appl Phys Lett 62:1155

    Article  ADS  Google Scholar 

  61. Von Behren J, van Buuren T, Zacharias M, Chimowitz EH, Fauchet PM (1998) Solid State Commun 105:317

    Article  ADS  Google Scholar 

  62. Torres-Costa V, Pászti F, Climent-Font A, Martín-Palma RJ, Martínez-Duart JM (2005) J Electrochem Soc 152(11):G846

    Article  Google Scholar 

  63. Macleod HA (1969) Thin-film optical filters, chap 5. Hilger, London

  64. Ben-Chorin M, Möller F, Köch F (1995) J Appl Phys 77(8):4482

    Article  CAS  ADS  Google Scholar 

  65. Krüger M, Marso M, Berger MG, Thönissen M, Billat S, Loo R, Reetz W, Lüth H, Hilbrich S, Arens-Fischer R, Grosse P (1997) Thin Solid Films 297(1–2):241

    Article  ADS  Google Scholar 

  66. Torres-Costa V, Martín-Palma RJ, Martínez-Duart JM (2007) Mater Sci Eng C 27(5–8):954

    Article  CAS  Google Scholar 

  67. Mulloni V, Gaburro Z, Pavesi L (2000) Phys Stat Solid A 182:479

    Article  CAS  ADS  Google Scholar 

  68. Jalkanen T, Torres-Costa V, Salonen J, Björkqvist M, Mäkilä E, Martínez-Duart JM, Lehto V-P (2009) Opt Exp 17(7):5446

    Article  CAS  ADS  Google Scholar 

  69. Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ, Ghadiri MR (1997) Science 278:840

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL (2000) Phys Stat Solid 182:541

    Article  CAS  ADS  Google Scholar 

  71. Martin-Palma RJ, Guerrero-Lemus R, Moreno JD, Martinez-Duart JM, Herrero P (1998) J Mater Sci Lett 17:845

    Article  CAS  Google Scholar 

  72. Torres-Costa V, Agullo-Rueda F, Martín-Palma RJ, Martínez-Duart JM (2005) Opt Mater 27:1084

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Partial funding was provided by the Spain’s National R&D Programme through grant no. MAT2008-06858-C02-01/NAN. Authors wish to thank T. Jälkanen and J. Salonen from the University of Turku (Finland) for fruitful discussion regarding the optical gas sensors, and Mr. Luis G. Pelayo for his technical contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Torres-Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Costa, V., Martín-Palma, R.J. Application of nanostructured porous silicon in the field of optics. A review. J Mater Sci 45, 2823–2838 (2010). https://doi.org/10.1007/s10853-010-4251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4251-8

Keywords

Navigation