Skip to main content
Log in

Processing of chemical solution-deposited BaTiO3-based thin films on Ni foils

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BaTiO3 films on base metal foils are of interest for capacitor applications, but the processing requires reducing atmospheres that influence the film defect chemistry and density. In this study, powders dried from barium titanate solutions and barium titanate films were studied by X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, infrared spectroscopy, and spectroscopic ellipsometry at various points in the processing. It was found that atmospheres designed to minimize Ni oxidation delay decomposition of organics, leading to retained carbonate phases. Thus, crystallization of the barium titanate occurs via decomposition of a barium carbonate phase. Retained organics that are present during high temperature processing can cause porosity in the films. On annealing at 1000 °C, there is slightly increase in the refractive index of the film due to further crystallization and densification. The final refractive index is comparable to that of 95% dense barium titanate ceramics. Re-oxidation did not change the refractive index of the film over the wavelength range from 350 to 650 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nagata H, Ko SW, Hong E, Randall CA, Trolier-McKinstry S, Pinceloup P, Skamser D, Randall M, Tajuddin A (2006) J Am Ceram Soc 89(9):2816

    CAS  Google Scholar 

  2. Yosenick TJ, Miller DV, Kumar R, Nelson JA, Randall CA, Adair JH (2005) J Mater Res 20(4):837

    Article  CAS  Google Scholar 

  3. Pithan C, Hennings D, Waser R (2005) Int J Appl Ceram Technol 2(1):1

    Article  CAS  Google Scholar 

  4. Song YL, Liu XL, Zhang JQ, Zou XY, Chen JF (2005) Powder Technol 155(1):26

    Article  CAS  Google Scholar 

  5. Dawley JT, Clem PG (2002) Appl Phys Lett 81(16):3028

    Article  CAS  Google Scholar 

  6. Ihlefeld J, Laughlin B, Hunt-Lowery A, Borland W, Kingon A, Maria J-P (2005) J Electroceram 14(2):95

    Article  CAS  Google Scholar 

  7. US Patent (2006) 7,029,971

  8. Aygun SM, Daniels P, Borland WJ, Maria J-P (2010) J Mater Res 25(3):427

    Article  CAS  Google Scholar 

  9. Tsur Y, Dunbar TD, Randall CA (2001) J Electroceram 7:25

    Article  CAS  Google Scholar 

  10. Nishida K, Kishi H, Funakubo H, Takeuchi H, Katoda T, Yomamoto T (2007) Jpn J Appl Phys 46:7005

    Article  CAS  Google Scholar 

  11. Dechakupt T, Yang G, Randall CA, Trolier-McKinstry S, Reaney IM (2008) J Am Ceram Soc 91(6):1845

    Article  CAS  Google Scholar 

  12. Yang GY, Dickey EC, Randall CA, Barber DE, Pinceloup P, Henderson MA, Hill RA, Beeson JJ, Skamser DJ (2004) J Appl Phys 96(12):7492

    Article  CAS  Google Scholar 

  13. Yang GY, Lee SI, Liu ZJ, Anthony CJ, Dickey EC, Liu ZK, Randall CA (2006) Acta Mater 54:3513

    Article  CAS  Google Scholar 

  14. Gibbons BJ, Trolier-McKinstry S (1997) IEEE Trans Appl Supercond 7(2):2177

    Article  Google Scholar 

  15. Trolier-McKinstry S, Hu H, Krupanidhi S, Chindaudom P, Vedam K, Newnham RE (1993) Thin Solid Films 230:15

    Article  CAS  Google Scholar 

  16. McKinstry S (1992) Characterization of ferroelectric surfaces and thin films by spectroscopic ellipsometry, Ph.D. Thesis, The Pennsylvania State University, University Park

  17. Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, New York

    Google Scholar 

  18. Frey MH, Payne DA (1995) Chem Mater 7(1):123

    Article  CAS  Google Scholar 

  19. Duran P, Gutierrez D, Tartaj J, Banares MA, Moure C (2002) J Eur Ceram Soc 22(6):797

    Article  CAS  Google Scholar 

  20. Kumar S, Messing GL, White WB (1993) J Am Ceram Soc 76(3):617

    Article  CAS  Google Scholar 

  21. Hoffmann S, Waser R (1999) J Eur Ceram Soc 19(6–7):1339

    Article  CAS  Google Scholar 

  22. Ischenko V, Pippel E, Koferstein R, Abicht HP, Woltersdorf J (2007) Solid State Sci 9(1):21

    Article  CAS  Google Scholar 

  23. Scherer GW (1997) J Sol-Gel Sci Technol 8(1-3):353

    Article  CAS  Google Scholar 

  24. Lee B, Zhang JP (2001) Thin Solid Films 388(1–2):107

    Article  CAS  Google Scholar 

  25. Mao CL, Dong XF, Zeng T (2007) Mater Lett 61(8-9):1633

    Article  CAS  Google Scholar 

  26. Veith M, Mathur S, Lecerf N, Huch V, Decker T, Beck HP, Eiser W, Haberkorn R (2000) J Sol-Gel Sci Technol 17(2):145

    Article  CAS  Google Scholar 

  27. McCauley DE, Chu MSH, Megherhi MH (2006) J Am Ceram Soc 89(1):193

    Article  CAS  Google Scholar 

  28. Frey MH, Payne DA (1995) Chem Mater 7:123

    Article  CAS  Google Scholar 

  29. Kamalasanan MN, Kumar ND, Chandra S (1994) J Appl Phys 76(8):4603

    Article  CAS  Google Scholar 

  30. Stockenhuber M, Mayer H, Lercher JA (1993) J Am Ceram Soc 76(5):1185

    Article  CAS  Google Scholar 

  31. Little H (1966) Infrared spectra of adsorbed species. Academic Press, London, New York, p 77

    Google Scholar 

  32. Jellison GE, Boatner LA, Lowndes DH, McKee RA, Godbole M (1994) Appl Opt 33(25):6053

    Article  CAS  Google Scholar 

  33. Ianculescu A, Gartner M, Despax B, Bley V, Lebey T, Gavrila R, Modreanu M (2006) Appl Surf Sci 253(1):344

    Article  CAS  Google Scholar 

  34. Huang ZM, Xue JQ, Ge YJ, Qin JH, Hou Y, Chu JH, Zhang DH (2006) Appl Phys Lett 88(21):212902

    Google Scholar 

  35. Tsurumi T, Harigai T, Tanaka D, Kakemoto H, Wada S (2004) Sci Technol Adv Mater 5(4):425

    Article  CAS  Google Scholar 

  36. Hu ZG, Wang GS, Huang ZM, Chu JH (2003) J Phys Chem Solids 64(12):2445

    Article  CAS  Google Scholar 

  37. Pita K, Cheng SD, Kam CH, Zhou Y, Lam YL, Chan YC (1999) Ferroelectrics 231(1–4):655

    CAS  Google Scholar 

  38. Nenkov M, Pencheva T (1988) Thin Solid Films 324(1–2):305

    Google Scholar 

  39. Jaffe B, Cook W R Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, New York

    Google Scholar 

  40. Biegalski M, Trolier-McKinstry S (2005) J Am Ceram Soc 88(1):71

    Article  CAS  Google Scholar 

  41. Lopez-Beltran AM, Mendoza-Galvan A (2006) Thin Solid Films 503(1-2):40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a Royal Thai government scholarship, Intel Corporation, and Kemet Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Won Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechakupt, T., Ko, S.W., Lu, SG. et al. Processing of chemical solution-deposited BaTiO3-based thin films on Ni foils. J Mater Sci 46, 136–144 (2011). https://doi.org/10.1007/s10853-010-4873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4873-x

Keywords

Navigation