Skip to main content
Log in

Effect of nanostructures on the exothermic reaction and ignition of Al/CuOx based energetic materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al/CuOx based micro- and nanoenergetic materials (EMs) have been made by the thermal oxidation of Cu thin films deposited onto silicon substrates followed by Al integration through thermal evaporation. The micro- and nano-EMs are then characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry. By comparing the thermite reactions and ignition properties of Al with micro-CuOx and Al with nano-CuOx, we show experimentally that one-dimensional nanostructures (CuO nanowires) and nano-Al affect greatly the exothermic behaviors and ignition properties of the Al/CuOx based EMs. The higher surface energy associated with the CuO nanowires and the deposited nano-Al is believed to be a possible factor contributing to the enhanced exothermic reactions that occur below the melting point of Al and the smaller ignition delay and lower ignition energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291

    Article  CAS  Google Scholar 

  2. Reddy B, Das K, Das S (2007) J Mater Sci 42:9366. doi:10.1007/s10853-007-1827-z

    Article  CAS  Google Scholar 

  3. Rossi C, Zhang K, Esteve D, Alphonse P, Ching JYC, Tailhades P, Vahlas C (2007) IEEE/ASME J Microelectromech Syst 16(4):919

    Article  CAS  Google Scholar 

  4. Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH Jr, Poco JF (2001) J Non Cryst Solids 285:338

    Article  CAS  Google Scholar 

  5. Menon L, Patibandla S, Ram KB, Shkuratov SI, Aurongzeb D, Holtz M, Berg J, Yun J, Temkin H (2004) Appl Phys Lett 84(23):4737

    Article  Google Scholar 

  6. Kim SH, Zachariah MR (2004) Adv Mater 16(20):1821

    Article  CAS  Google Scholar 

  7. Pantoya ML, Granier JJ (2005) Propell Explos Pyrotech 30(1):53

    Article  CAS  Google Scholar 

  8. Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT (2005) J Appl Phys 98(6):064903

    Article  Google Scholar 

  9. Barbee TW, Simpson RL, Gash AE, Satcher JH (2005) U.S. Patent WO 2005 016850 A2

  10. Prakash A, McCormick AV, Zachariah MR (2005) Nano Lett 5(7):1357

    Article  CAS  Google Scholar 

  11. Pantoya ML, Granier JJ (2006) J Therm Anal Calorim 85(1):37

    Article  CAS  Google Scholar 

  12. Apperson S, Shende RV, Subramanian S, Tappmeyer D, Gangopadhyay S, Chen Z, Gangopadhyay K, Redner P, Nicholich S, Kapoor D (2007) Appl Phys Lett 91:243109

    Article  Google Scholar 

  13. Walter KC, Pesiri DR, Wilson DE (2007) J Propuls Power 23(4):645

    Article  CAS  Google Scholar 

  14. Puszynski JA, Bulian CJ, Swiatkiewicz JJ (2007) J Propuls Power 23(4):698

    Article  CAS  Google Scholar 

  15. Sanders VE, Asay BW, Foley TJ, Tappan BC, Pacheco AN, Son SF (2007) J Propuls Power 23(4):707

    Article  CAS  Google Scholar 

  16. Son SF, Asay BW, Foley TJ, Yetter RA, Wu MH, Risha GA (2007) J Propuls Power 23(4):715

    Article  CAS  Google Scholar 

  17. Dutro GM, Yetter RA, Risha GA, Son SF (2009) Proc Combust Inst 32:1921

    Article  CAS  Google Scholar 

  18. Martirosyan KS, Wang L, Vicent A, Luss D (2009) Nanotechnology 20:405609

    Article  CAS  Google Scholar 

  19. Currano LJ, Churaman WA (2009) IEEE/ASME J Microelectromech Syst 18(4):799

    Article  CAS  Google Scholar 

  20. Ohkuraa Y, Liua SY, Raoa PM, Zheng X (2011) Proc Combust Inst 33(2):1909

    Article  Google Scholar 

  21. Zhang K, Rossi C, Tenailleau C, Alphonse P, Rodriguez GAA (2007) Appl Phys Lett 91(11):113117

    Article  Google Scholar 

  22. Zhang K, Rossi C, Petrantoni M, Mauran N (2008) IEEE/ASME J Microelectromech Syst 17(4):832

    Article  CAS  Google Scholar 

  23. Jiang X, Herricks T, Xia Y (2002) Nano Lett 2(12):1333

    Article  CAS  Google Scholar 

  24. Liu Y, Liao L, Li J, Pan C (2007) J Phys Chem C 111:5050

    Article  CAS  Google Scholar 

  25. Park YW, Seong NJ, Jung HJ, Chanda A, Yoon SG (2010) J Electrochem Soc 157:K119

    Article  CAS  Google Scholar 

  26. Xu CH, Woo CH, Shi SQ (2004) Chem Phys Lett 399:62

    Article  CAS  Google Scholar 

  27. Zhang K, Rossi C, Tenailleau C, Alphonse P, Ching JYC (2007) Nanotechnology 18(27):275607

    Article  Google Scholar 

  28. Blobaum KJ, Reiss ME, Lawrence JMP, Weihs TP (2003) J Appl Phys 94(5):2915

    Article  CAS  Google Scholar 

  29. Gavens AJ, Van Heerden D, Mann AB, Reiss ME, Weihs TP (2000) J Appl Phys 87(3):1255

    Article  CAS  Google Scholar 

  30. Wang J, Besnoin E, Knio OM, Weihs TP (2005) J Appl Phys 97:114307

    Article  Google Scholar 

  31. Trenkle JC, Weihs TP, Hufnagel TC (2008) Scr Mater 58(4):315

    Article  CAS  Google Scholar 

  32. Rogachev AS (2008) Russ Chem Rev 77(1):21

    Article  CAS  Google Scholar 

  33. http://www.indium.com/nanofoil/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Xu, D. & Zhang, K. Effect of nanostructures on the exothermic reaction and ignition of Al/CuOx based energetic materials. J Mater Sci 47, 1296–1305 (2012). https://doi.org/10.1007/s10853-011-5903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5903-z

Keywords

Navigation