Skip to main content

Advertisement

Log in

The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The surface properties of biomaterials play a vital role in cell morphology and behaviors such as cell adhesion, migration, proliferation and differentiation. Three different crystal phases of titania film (rutile, anatase and amorphous titania) with similar roughness were successfully synthesized by DC reactive magnetron sputtering. The surface roughness of each film was about 8–10 nm. Primary rat osteoblasts were used to observe changes in morphology and to evaluate cell behavior at the film surface. The number of the osteoblasts on anatase film was significantly higher than rutile and amorphous films after 36 and 72 h incubation. More importantly, synthesis of alkaline phosphatase was significantly greater by osteoblasts cultured on anatase film than on rutile and amorphous films after 7 and 14 days. In addition, the cells grown on the anatase phase film had the largest spreading area; the actin filaments in cells with regular directions were well defined and fully spreaded. The results indicate that the anatase phase of titania with nanoscale topography yield the best biological effects for cell adhesion, spreading, proliferation and differentiation. There are strong therapeutic prospects for this biomaterial film for osteoblast proliferation, with possible applications for orthopedic and dental implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Bordji, J.Y. Jouzeau, D. Mainard et al., Biomaterials 17, 929 (1996). doi:10.1016/0142-9612(96)83289-3

    Article  CAS  Google Scholar 

  2. Black J, Hasting G, in Handbook of Biomaterial Properties. (Chapman & Hall, London, 1998), p. 179

  3. S.H. Oh, R.R. Finones, C. Daraio et al., Biomaterials 26, 4938 (2005). doi:10.1016/j.biomaterials.2005.01.048

    Article  CAS  Google Scholar 

  4. M. Karlsson, E. Palsgard, P.R. Wilshaw et al., Biomaterials 24, 3039 (2003). doi:10.1016/S0142-9612(03)00146-7

    Article  CAS  Google Scholar 

  5. D.A. Boyd, L. Greengard, M. Brongersma et al., Nano. Lett. 11, 2592 (2006). doi:10.1021/nl062061m

    Article  Google Scholar 

  6. X. Chen, S.S. Mao, J. Nanosci. Nanotechnol. 4, 906 (2006). doi:10.1166/jnn.2006.160

    Article  Google Scholar 

  7. S. Leeuwenburgh, J. Wolke, J. Schoonman et al., J. Biomed. Mater. Res. A 74, 275 (2005). doi:10.1002/jbm.a.30420

    CAS  Google Scholar 

  8. R. Rabady, I. Avrutsky, Appl. Opt. 44, 378 (2005). doi:10.1364/AO.44.000378

    Article  CAS  Google Scholar 

  9. W. Zhou, X. Zhong, X. Wu et al., J. Biomed. Mater. Res. A 81, 453 (2007). doi:10.1002/jbm.a.30987

    Google Scholar 

  10. O. Suzuki, S. Kamakura, T. Katagiri, J. Biomed. Mater. Res. B Appl. Biomater. 77, 201 (2006). doi:10.1002/jbm.b.30407

    Google Scholar 

  11. C.J. Wilson, R.E. Clegg, D.I. Leavesley et al., Tissue Eng. 11, 1 (2005). doi:10.1089/ten.2005.11.1

    Article  CAS  Google Scholar 

  12. R. Kriparamanan, P. Aswath, A. Zhou et al., J. Nanosci. Nanotechnol. 6, 1905 (2006)

    Article  CAS  Google Scholar 

  13. M. Sato, T.J. Webster, Expert Rev. Med. Devices 1, 105 (2004). doi:10.1586/17434440.1.1.105

    Article  CAS  Google Scholar 

  14. C. Yao, T.J. Webster, J. Nanosci. Nanotechnol. 6, 2682 (2006). doi:10.1166/jnn.2006.447

    Article  CAS  Google Scholar 

  15. T.J. Webster, E.S. Ahn, Adv. Biochem. Eng. Biotechnol. 103, 275 (2007)

    CAS  Google Scholar 

  16. A.F. Von Recum, T.G. Van kooten, J. Biomater. Sci. Polym. Ed. 7, 181 (1995). doi:10.1163/156856295X00698

    Article  Google Scholar 

  17. K. Anselme, Biomaterials 21, 667 (2000). doi:10.1016/S0142-9612(99)00242-2

    Article  CAS  Google Scholar 

  18. W. Zhou, X. Zhong, X. Wu et al., Surf. Coat. Technol. 200, 6155 (2006). doi:10.1016/j.surfcoat.2005.09.029

    Article  CAS  Google Scholar 

  19. T. Lee, S. Tsai, E. Chang et al., J. Mater. Sci. Mater. Med. 13, 281 (2002). doi:10.1023/A:1014010901423

    Article  CAS  Google Scholar 

  20. T.J. Webster, C. Ergun, R.H. Doremus, Biomaterials 21, 1803 (2000). doi:10.1016/S0142-9612(00)00075-2

    Article  CAS  Google Scholar 

  21. K. Anselme, M. Bigerelle, Biomaterials 27, 1187 (2006). doi:10.1016/j.biomaterials.2005.10.009

    Article  CAS  Google Scholar 

  22. D.M. Brunette, B. Chehroudi, J. Biomech. Eng. 121, 49 (1999). doi:10.1115/1.2798042

    Article  CAS  Google Scholar 

  23. E.K. Yim, K.W. Leong, Nanomedicine 1, 10 (2005)

    CAS  Google Scholar 

  24. E. Eisenbarth, D. Velten, J. Breme, Biomol. Eng. 24, 27 (2007). doi:10.1016/j.bioeng.2006.05.016

    Article  CAS  Google Scholar 

  25. V. Perla, T.J. Webster, J. Biomed. Mater. Res. A 75, 356 (2005). doi:10.1002/jbm.a.30423

    Google Scholar 

  26. M. Sato, E.B. Slamovich, T.J. Webster, Biomaterials 26, 1349 (2005). doi:10.1016/j.biomaterials.2004.04.044

    Article  CAS  Google Scholar 

  27. T.J. Webster, J.U. Ejiofor, Biomaterials 25, 4731 (2004). doi:10.1016/j.biomaterials.2003.12.002

    Article  CAS  Google Scholar 

  28. B.S. Zhu, Q.Q. Zhang, Q.H. Lu, Biomaterials 25, 4215 (2004). doi:10.1016/j.biomaterials.2003.11.020

    Article  CAS  Google Scholar 

  29. B. Zhu, Q. Lu, J. Yin et al., Tissue Eng. 11, 825 (2005). doi:10.1089/ten.2005.11.825

    Article  CAS  Google Scholar 

  30. K. Cai, J. Bossert, K.D. Jandt, Colloids Surf. B Biointerfaces 49, 136 (2006). doi:10.1016/j.colsurfb.2006.02.016

    Article  CAS  Google Scholar 

  31. K. Cai, A. Rechtenbach, J. Hao et al., Biomaterials 26, 5960 (2005). doi:10.1016/j.biomaterials.2005.03.020

    Article  CAS  Google Scholar 

  32. Y. Arima, H. Iwata, Biomaterials 28, 3074 (2007). doi:10.1016/j.biomaterials.2007.03.013

    Article  CAS  Google Scholar 

  33. J. Wei, M. Yoshinari, S. Takemoto et al., J. Biomed. Mater. Res. B Appl. Biomater 81, 66 (2007). doi:10.1002/jbm.b.30638

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. QH Lu (Analysis and Measurement Center of Shanghai JiaoTong University) for AFM measurement and modification of the manuscript. The project was financially supported by the National Natural Science Foundation of China (30572053) and Shanghai Science and Technology Committee (0452nm063 and 0652nm018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wantao Chen.

Additional information

J. He and W. Zhou contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Zhou, W., Zhou, X. et al. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci: Mater Med 19, 3465–3472 (2008). https://doi.org/10.1007/s10856-008-3505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3505-3

Keywords

Navigation