Skip to main content
Log in

Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tissue engineering requires the development of three-dimensional water-stable scaffolds. In this study, silk fibroin/chitosan (SFCS) scaffold was successfully prepared by freeze-drying method. The scaffold is water-stable, only swelling to a limited extent depending on its composition. Fourier Transform Infrared (FTIR) spectra and X-Ray diffraction curves confirmed the different structure of SFCS scaffolds from both chitosan and silk fibroin. The homogeneous porous structure, together with nano-scale compatibility of the two naturally derived polymers, gives rise to the controllable mechanical properties of SFCS scaffolds. By varying the composition, both the compressive modulus and compressive strength of SFCS scaffolds can be controlled. The porosity of SFCS scaffolds is above 95% when the total concentration of silk fibroin and chitosan is below 6 wt%. The pore sizes of the SFCS scaffolds range from 100 μm to 150 μm, which can be regulated by changing the total concentration. MTT assay showed that SFCS scaffolds can promote the proliferation of HepG2 cells (human hepatoma cell line) significantly. All these results make SFCS scaffold a suitable candidate for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Chan, F. Berthiaume, B.D. Nath, A.W. Tilles, M. Toner, M.L. Yarmush, Hepatic tissue engineering for adjunct and temporary liver support: Critical technologies. Liver Transpl. 10, 1331–1342 (2004). doi:10.1002/lt.20229

    Article  Google Scholar 

  2. L.E. Freed, G. Vunjaknovakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow et al., Biodegradable polymer scaffolds for tissue engineering. Bio-Technology 12, 689–693 (1994)

    CAS  Google Scholar 

  3. J. Mayer, E. Karamuk, T. Akaike, E. Wintermantel, Matrices for tissue engineering-scaffold structure for a bioartificial liver support system. J. Control. Release 64, 81–90 (2000). doi:10.1016/S0168-3659(99)00136-4

    Article  CAS  Google Scholar 

  4. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000). doi:10.1016/S0142-9612(00)00121-6

    Article  CAS  Google Scholar 

  5. M.H. Sheridan, L.D. Shea, M.C. Peters, D.J. Mooney, Bioadsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release 64, 91–102 (2000). doi:10.1016/S0168-3659(99)00138-8

    Article  CAS  Google Scholar 

  6. K.M. Kulig, J.P. Vacanti, Hepatic tissue engineering. Transpl. Immunol. 12, 303–310 (2004). doi:10.1016/j.trim.2003.12.005

    Article  CAS  Google Scholar 

  7. E. Torok, J.M. Pollock, P.X. Ma, C. Vogel, M. Dandri, J. Petersen et al., Hepatic tissue engineering on 3-dimensional biodegradable polymers within a pulsatile flow bioreactor. Dig. Surg. 18, 196–203 (2001). doi:10.1159/000050129

    Article  CAS  Google Scholar 

  8. J.J. Ge, Y.F. Cui, Y. Yan, W.Y. Jiang, The effect of structure on pervaporation of chitosan membrane. J. Membr. Sci. 165, 75–81 (2000). doi:10.1016/S0376-7388(99)00228-8

    Article  CAS  Google Scholar 

  9. D.K. Kim, H.S. Kim, Structure and characteristic of chitosan Bombyx mori silk fibroin blend films. Polym-Korea 29, 408–412 (2005)

    CAS  Google Scholar 

  10. X. Chen, W.J. Li, W. Zhong, C.J. Ge, H.F. Wang, T.Y. Yu, Studies on chitosan-fibroin blend membranes. 2. The pH and ion sensitivities of semi-IPN membranes. Chem. J. Chin. U 17, 968–972 (1996)

    Google Scholar 

  11. Q.A. Lv, Q.L. Feng, K. Hu, F.Z. Cui, Three-dimensional fibroin/collagen scaffolds derived from aqueous solution and the use for HepG2 culture. Polymer (Guildf) 46, 12662–12669 (2005). doi:10.1016/j.polymer.2005.10.137

    Article  CAS  Google Scholar 

  12. X.H. Wang, Y.N. Yan, F. Lin, Z. Xiong, R.D. Wu, R.J. Zhang et al., Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver. J. Biomater. Sci. Polym. Ed. 16, 1063–1080 (2005). doi:10.1163/1568562054798554

    Article  CAS  Google Scholar 

  13. A.S. Gobin, V.E. Froude, A.B. Mathur, Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J. Biomed. Mater. Res. A 74A, 465–473 (2005). doi:10.1002/jbm.a.30382

    Article  CAS  Google Scholar 

  14. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen et al., Silk-based biomaterials. Biomaterials 24, 401–416 (2003). doi:10.1016/S0142-9612(02)00353-8

    Article  CAS  Google Scholar 

  15. Y. Gotoh, N. Minoura, T. Miyashita, Preparation and characterization of conjugates of silk fibroin and chitooligosaccharides. Colloid Polym. Sci. 280, 562–568 (2002). doi:10.1007/s00396-002-0658-3

    Article  CAS  Google Scholar 

  16. M. Santin, A. Motta, G. Freddi, M. Cannas, In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999). doi:10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R

    Article  CAS  Google Scholar 

  17. C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G. Li, J. Janin, Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins-Structure Funct. Genet. 44, 119–122 (2001). doi:10.1002/prot.1078

    Article  CAS  Google Scholar 

  18. R. Rujiravanit, S. Kruaykitanon, A.M. Jamieson, S. Tokura, Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromol. Biosci. 3, 604–611 (2003). doi:10.1002/mabi.200300027

    Article  CAS  Google Scholar 

  19. C.H. Du, B.K. Zhu, J.Y. Chen, Y.Y. Xu, Metal ion permeation properties of silk fibroin/chitosan blend membranes. Polym. Int. 55, 377–382 (2006). doi:10.1002/pi.1995

    Article  CAS  Google Scholar 

  20. H. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.S. Lee et al., A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24, 801–808 (2003). doi:10.1016/S0142-9612(02)00370-8

    Article  CAS  Google Scholar 

  21. M.N.V.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000). doi:10.1016/S1381-5148(00)00038-9

    Article  CAS  Google Scholar 

  22. A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983–5990 (2005). doi:10.1016/j.biomaterials.2005.03.016

    Article  CAS  Google Scholar 

  23. A. Subramanian, D. Vu, G.F. Larsen, H.Y. Lin, Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 16, 861–873 (2005). doi:10.1163/1568562054255682

    Article  CAS  Google Scholar 

  24. B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35, 126–139 (2004). doi:10.1016/j.enzmictec.2003.12.013

    Article  CAS  Google Scholar 

  25. J.K.F. Suh, H.W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21, 2589–2598 (2000). doi:10.1016/S0142-9612(00)00126-5

    Article  CAS  Google Scholar 

  26. S.V. Madihally, H.W.T. Matthew, Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133–1142 (1999). doi:10.1016/S0142-9612(99)00011-3

    Article  CAS  Google Scholar 

  27. P.J. VandeVord, H.W.T. Matthew, S.P. DeSilva, L. Mayton, B. Wu, P.H. Wooley, Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59, 585–590 (2002). doi:10.1002/jbm.1270

    Article  CAS  Google Scholar 

  28. Q. Lv, S.J. Zhang, K. Hu, Q.L. Feng, C.B. Cao, F.Z. Cui, Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials 28, 2306–2313 (2007). doi:10.1016/j.biomaterials.2007.01.031

    Article  Google Scholar 

  29. S. Woodward, R.J. Thomson, Micropropagation of the silk tassel bush, Garrya elliptica Dougl. Plant Cell Tissue Organ. Cult. 44, 31–35 (1996). doi:10.1007/BF00045910

    Article  CAS  Google Scholar 

  30. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  31. T. Yui, K. Imada, K. Okuyama, Y. Obata, K. Suzuki, K. Ogawa, Molecular and crystal-structure of the anhydrous form of Chitosan. Macromolecules 27, 7601–7605 (1994). doi:10.1021/ma00104a014

    Article  CAS  Google Scholar 

  32. A.K. Tetsuo Asakura, R. Tabeta, H. Saito, Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR, x-ray diffraction, and infrared spectroscopy. Macromolecules 18, 1841–1845 (1985)

    Article  Google Scholar 

  33. S. Sampaio, P. Taddei, P. Monti, J. Buchert, G. Freddi, Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. J. Biotechnol. 116, 21–33 (2005). doi:10.1016/j.jbiotec.2004.10.003

    Article  CAS  Google Scholar 

  34. S.J. Park, K.Y. Lee, W.S. Ha, S.Y. Park, Structural changes and their effect on mechanical properties of silk fibroin/chitosan blends. J. Appl. Polym. Sci. 74, 2571–2575 (1999). doi:10.1002/(SICI)1097-4628(19991209)74:11<2571::AID-APP2>3.0.CO;2-A

    Article  CAS  Google Scholar 

  35. T. Nakamura, A. Teramoto, A. Hachimori, K. Abe, Preparation of silk fibroin-chitosan membranes and the effects on macrophage. Sen-I Gakkaishi 55, 369–375 (1999)

    CAS  Google Scholar 

  36. H. Kweon, H.C. Ha, I.C. Um, Y.H. Park, Physical properties of silk fibroin/chitosan blend films. J. Appl. Polym. Sci. 80, 928–934 (2001)

    Article  CAS  Google Scholar 

  37. G.D. Kang, K.H. Lee, C.S. Ki, J.H. Nahm, Y.H. Park, Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol. Res. 12, 534–539 (2004)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (No. 2005CB623905) and the Foundation of Analysis and Testing in Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingling Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

She, Z., Jin, C., Huang, Z. et al. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci: Mater Med 19, 3545–3553 (2008). https://doi.org/10.1007/s10856-008-3526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3526-y

Keywords

Navigation