Skip to main content
Log in

Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fluorescein isothiocyanate (FITC)-encapsulated SiO2 core-shell particles with a nanoscale ZnO finishing layer have been synthesized for the first time as multifunctional “smart” nanostructures. Detailed characterization studies confirmed the formation of an outer ZnO layer on the SiO2–FITC core. These ~200 nm sized particles showed promise toward cell imaging and cellular uptake studies using the bacterium Escherichia coli and Jurkat cancer cells, respectively. The FITC encapsulated ZnO particles demonstrated excellent selectivity in preferentially killing Jurkat cancer cells with minimal toxicity to normal primary immune cells (18% and 75% viability remaining, respectively, after exposure to 60 μg/ml) and inhibited the growth of both gram-positive and gram-negative bacteria at concentrations ≥250–500 μg/ml (for Staphylococcus aureus and Escherichia coli, respectively). These results indicate that the novel FITC encapsulated multifunctional particles with nanoscale ZnO surface layer can be used as smart nanostructures for particle tracking, cell imaging, antibacterial treatments and cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Wang, S. Gao, W.H. Ye, H.S. Yoon, Y.Y. Yang, Nat. Mater. 5, 791 (2006). doi:10.1038/nmat1737

    Article  PubMed  CAS  ADS  Google Scholar 

  2. W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu et al., Nat. Mater. 5, 971 (2006). doi:10.1038/nmat1775

    Article  PubMed  CAS  ADS  Google Scholar 

  3. R.K. Visaria, R.J. Griffin, B.W. Williams, E.S. Ebbini, G.F. Paciotti, C.W. Song et al., Mol. Cancer Ther. 5, 1014 (2006). doi:10.1158/1535-7163.MCT-05-0381

    Article  PubMed  CAS  Google Scholar 

  4. A. Burns, H. Ow, U. Wiesner, Chem. Soc. Rev. 35, 1028 (2006). doi:10.1039/b600562b

    Article  PubMed  CAS  Google Scholar 

  5. H. Ow, D.R. Larson, M. Srivatsava, B.A. Baird, W.W. Webb, U. Wiesner, Nano. Lett. 5, 113 (2005). doi:10.1021/nl0482478

    Article  PubMed  CAS  ADS  Google Scholar 

  6. T. Deng, J.S. Li, J.H. Jiang, G.L. Shen, R.Q. Yu, Adv. Funct. Mater. 16, 2147 (2006). doi:10.1002/adfm.200600149

    Google Scholar 

  7. Y.S. Lin, C.P. Tsai, H.Y. Huang, C.T. Kuo, Y. Huang, Y.C. Chen et al., Chem. Mater. 17, 4570 (2005). doi:10.1021/cm051014c

    Article  CAS  Google Scholar 

  8. C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas et al., Cancer Res. Treat. 3, 33 (2004)

    CAS  Google Scholar 

  9. J. Enderlein, Appl. Phys. Lett. 80, 315 (2002). doi:10.1063/1.1434314

    Article  CAS  ADS  Google Scholar 

  10. L.R. Hirrsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price et al., Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003). doi:10.1073/pnas.2232479100

    Article  ADS  CAS  Google Scholar 

  11. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Appl. Phys. Lett. 90, 213902 (2007). doi:10.1063/1.2742324

    Article  ADS  CAS  Google Scholar 

  12. J. Hays, K.M. Reddy, N.Y. Graces, M.H. Engelhard, V. Shutthanadan, M. Luo et al., J. Phys. Condens. Matter. 19, 266203 (2007). doi:10.1088/0953-8984/19/26/266203

    Article  ADS  CAS  Google Scholar 

  13. L. Xiong, J. Shi, J. Gu, L. Li, W. Shen, Z. Hua, Solid State Sci. 6, 1341 (2004). doi:10.1016/j.solidstatesciences.2004.07.006

    Article  CAS  ADS  Google Scholar 

  14. R. Konenkamp, C.R. Word, M. Godinez, Nano. Lett. 5, 2005 (2005)

  15. H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14, 418 (2002). doi:10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K

  16. F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu et al., Anal. Chim. Acta 519, 155 (2004). doi:10.1016/j.aca.2004.05.070

    Article  CAS  Google Scholar 

  17. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally et al., Adv Funct Mater 12, 323 (2002). doi:10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

    Article  CAS  Google Scholar 

  18. C. Le’vy-Cle’ment, R. Tena-Zaera, M.A. Ryan, A. Katty, A.G. Hodes, Adv. Mater. 17, 1512 (2005). doi:10.1002/adma.200401848

    Article  CAS  Google Scholar 

  19. Z.S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang et al., Chem. Mater. 13, 678 (2001). doi:10.1021/cm000230c

    Article  CAS  Google Scholar 

  20. A. Dorfman, N. Kumar, J. Hahm, Langmuir 22, 4890 (2006). doi:10.1021/la053270+

    Article  PubMed  CAS  Google Scholar 

  21. A. Dorfman, N. Kumar, J. Hahm, Adv. Mater. 18, 2685 (2006). doi:10.1002/adma.200502616

    Article  CAS  Google Scholar 

  22. S. Monticone, R. Tufeu, A.V. Kanaev, J. Phys. Chem. B 102, 2854 (1998). doi:10.1021/jp973425p

    Article  CAS  Google Scholar 

  23. A. Imhof, M. Megens, J.J. Engelberts, D.T.N. de Lang, R. Sprik, W.L. Vos, J Phys Chem B 103, 1408 (1999). doi:10.1021/jp983241q

    Article  CAS  Google Scholar 

  24. J.E. Coligan, Current Protocols in Immunology, Chapter 5 (Wiley-Interscience Press, New York, 1995)

  25. A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thuevuthasan, Phys. Rev. B 72, 054402 (2005). doi:10.1103/PhysRevB.72.054402

  26. J. Hays, A. Thurber, M.H. Engelhard, K.M. Reddy, A. Punnoose, J. Appl. Phys. 99, 08M123 (2006)

    Article  CAS  Google Scholar 

  27. A. Burns, P. Sengupta, T. Zedayko, B. Baird, U. Wiesner, Small 2, 723 (2006). doi:10.1002/smll.200600017

    Article  PubMed  CAS  Google Scholar 

  28. L. Song, E.J. Hennink, I.T. Young, H.J. Tanke, Biophys. J. 68, 2588 (1995)

    Article  PubMed  CAS  ADS  Google Scholar 

  29. S.A. Soper, H.L. Nutter, R.A. Keller, L.M. Davis, E.B. Shera, Photochem. Photobiol. 57, 972 (1993). doi:10.1111/j.1751-1097.1993.tb02957.x

    Article  CAS  Google Scholar 

  30. J.G. Holt, N.R. Krieg, P.H.A. Sneath, J.T. Staley, S.T. Williams, Bergey’s manual of determinative bacteriology, 9th edn. (Williams and Wilkins Press, Baltimore, 1994), p. 787

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by DoE-EPSCoR grant DE-FG02-04ER46142 (Dye encapsulation and fluorescent properties), NSF-Idaho-EPSCoR Program EPS-0447689 (biological studies), NSF-CAREER award DMR-0449639 (nanoparticle synthesis), NSF-MRI grants MRI-0521315, MRI-0619793 and MRI-0722699 (characterization studies), NIH awards 1R15 AI06277-01A1, 1R43 AR052955-01 and P20RR016454 (biological studies), and Mountain States Tumor and Medical Research Institute (biological studies). Some of the experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL), which is a national scientific user facility operated by the Office of Biological and Environmental Research, US Department of Energy at the Pacific Northwest National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Punnoose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wingett, D., Engelhard, M.H. et al. Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. J Mater Sci: Mater Med 20, 11–22 (2009). https://doi.org/10.1007/s10856-008-3541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3541-z

Keywords

Navigation