Skip to main content
Log in

Combining NMR Relaxation with Chemical Shift Perturbation Data to Drive Protein–protein Docking

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The modeling of biomolecular complexes by computational docking using the known structures of their constituents is developing rapidly to become a powerful tool in structural biology. It is especially useful in combination with even limited experimental information describing the interface. Here we demonstrate for the first time the use of diffusion anisotropy in combination with chemical shift perturbation data to drive protein–protein docking. For validation purposes we make use of simulated diffusion anisotropy data. Inclusion of this information, which can be derived from NMR relaxation rates and reports on the orientation of the components of a complex with respect to the rotational diffusion tensor, substantially improves the docking results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • G. Barbato M. Ikura L.E. Kay R.W. Pastor A. Bax (1992) Biochemistry 31 5269–5278 Occurrence Handle10.1021/bi00138a005

    Article  Google Scholar 

  • A. Bax A. Grishaev (2005) Curr. Opin. Struct. Biol. 15 563–570 Occurrence Handle10.1016/j.sbi.2005.08.006

    Article  Google Scholar 

  • P. Bernado T. Akerud J.G. Torre Particlede la M. Akke M. Pons (2003) J. Am. Chem. Soc. 125 916–923 Occurrence Handle10.1021/ja027836h

    Article  Google Scholar 

  • Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse_Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Acta Crystallogr. D Biol. Crystallogr., 54(Pt 5), 905–921

    Google Scholar 

  • R. Bruschweiler X.B. Liao P.E. Wright (1995) Science 268 886–889 Occurrence Handle1995Sci...268..886B

    ADS  Google Scholar 

  • Y. Chen J. Reizer M.H. Saier SuffixJr. W.J. Fairbrother P.E. Wright (1993) Biochemistry 32 32–37 Occurrence Handle10.1021/bi00052a006

    Article  Google Scholar 

  • G.M. Clore C.D. Schwieters (2003) J. Am. Chem. Soc. 125 2902–2912 Occurrence Handle10.1021/ja028893d

    Article  Google Scholar 

  • J.G. Torre Particlede la M.L. Huertas B. Carrasco (2000) J. Magn. Reson. 147 138–146 Occurrence Handle10.1006/jmre.2000.2170 Occurrence Handle2000JMagR.147..138G

    Article  ADS  Google Scholar 

  • A. Dobrodumov A.M. Gronenborn (2003) Proteins 53 18–32 Occurrence Handle10.1002/prot.10439

    Article  Google Scholar 

  • C. Dominguez R. Boelens A.M. Bonvin (2003) J. Am. Chem. Soc. 125 1731–1737 Occurrence Handle10.1021/ja026939x

    Article  Google Scholar 

  • P. Dosset J.C. Hus M. Blackledge D. Marion (2000) J. Biomol. NMR 16 23–28 Occurrence Handle10.1023/A:1008305808620

    Article  Google Scholar 

  • J. Fernandez-Recio M. Totrov R. Abagyan (2004) J. Mol. Biol. 335 843–865 Occurrence Handle10.1016/j.jmb.2003.10.069

    Article  Google Scholar 

  • D. Fushman R. Varadan M. Assfalg O. Walker (2004) Prog. Nucl. Magn. Reson. Spectrosc. 44 189–214 Occurrence Handle10.1016/j.pnmrs.2004.02.001

    Article  Google Scholar 

  • D. Fushman R. Xu D. Cowburn (1999) Biochemistry 38 10225–10230 Occurrence Handle10.1021/bi990897g

    Article  Google Scholar 

  • I. Halperin B. Ma H. Wolfson R. Nussinov (2002) Proteins 47 409–443 Occurrence Handle10.1002/prot.10115

    Article  Google Scholar 

  • Y. Hashimoto S.P. Smith A.R. Pickford A.A. Bocquier I.D. Campbell J.M. Werner (2000) J. Biomol. NMR 17 203–214 Occurrence Handle10.1023/A:1008341609461

    Article  Google Scholar 

  • J.C. Hus D. Marion M. Blackledge (1999) J. Am. Chem. Soc. 121 2311–2312 Occurrence Handle10.1021/ja983265a

    Article  Google Scholar 

  • P.M. Hwang N.R. Skrynnikov L.E. Kay (2001) J. Biomol. NMR 20 83–88 Occurrence Handle10.1023/A:1011226512421

    Article  Google Scholar 

  • C.D. Schwieters J.J. Kuszewski N. Tjandra G.M. Clore (2003) J. Magn. Reson. 160 65–73 Occurrence Handle10.1016/S1090-7807(02)00014-9 Occurrence Handle2003JMagR.160...65S

    Article  ADS  Google Scholar 

  • Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nat. Struct. Biol., 4, 443–449

  • A.D. Dijk Particlevan D. Fushman A.M. Bonvin (2005a) Proteins 60 367–381 Occurrence Handle10.1002/prot.20476

    Article  Google Scholar 

  • A.D.J. Dijk Particlevan R. Boelens A.M.J.J. Bonvin (2005b) FEBS J. 272 293–312 Occurrence Handle10.1111/j.1742-4658.2004.04473.x

    Article  Google Scholar 

  • N.A. Nuland Particlevan I.W. Hangyi R.C. Schaik Particlevan H.J. Berendsen W.F. Gunsteren Particlevan R.M. Scheek G.T. Robillard (1994) J. Mol. Biol. 237 544–559 Occurrence Handle10.1006/jmbi.1994.1254

    Article  Google Scholar 

  • G. Wang J.M. Louis M. Sondej Y.J. Seok A. Peterkofsky G.M. Clore (2000) EMBO J. 19 5635–5649 Occurrence Handle10.1093/emboj/19.21.5635

    Article  Google Scholar 

  • D. Worthylake N.D. Meadow S. Roseman D.I. Liao O. Herzberg S.J. Remington (1991) Proc. Natl. Acad. Sci. USA 88 10382–10386 Occurrence Handle1991PNAS...8810382W

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. J. J. Bonvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dijk, A.D.J., Kaptein, R., Boelens, R. et al. Combining NMR Relaxation with Chemical Shift Perturbation Data to Drive Protein–protein Docking. J Biomol NMR 34, 237–244 (2006). https://doi.org/10.1007/s10858-006-0024-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-0024-8

Keywords

Navigation