Skip to main content
Log in

ANT2 Isoform Required for Cancer Cell Glycolysis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The three adenine nucleotide translocator ({ANT1} to {ANT3}) isoforms, differentially expressed in human cells, play a crucial role in cell bioenergetics by catalyzing ADP and ATP exchange across the mitochondrial inner membrane. In contrast to differentiated tissue cells, transformed cells, and their ρ0 derivatives, i.e. cells deprived of mitochondrial DNA, sustain a high rate of glycolysis. We compared the expression pattern of {ANT} isoforms in several transformed human cell lines at different stages of the cell cycle. The level of {ANT2} expression and glycolytic ATP production in these cell lines were in keeping with their metabolic background and their state of differentiation. The sensitivity of the mitochondrial inner membrane potential (Δψ) to several inhibitors of glycolysis and oxidative phosphorylation confirmed this relationship. We propose a new model for ATP uptake in cancer cells implicating the {ANT2} isoform, in conjunction with hexokinase II and the β subunit of mitochondrial ATP synthase, in the Δψ maintenance and in the aggressiveness of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri, H., Karlberg, O., and Andersson, S. E. (2003). J. Mol. Evol. 56, 137–150.

    Article  CAS  Google Scholar 

  • Balasubramanian, B., Lowry, C. V., and Zitomer, R. S. (1993). Mol. Cell. Biol. 13, 6071–6078.

    CAS  Google Scholar 

  • Barath, P., Albert-Fournier, B., Luciakova, K., and Nelson, B. D. (1999). J. Biol. Chem. 274, 3378–3384.

    Article  CAS  Google Scholar 

  • Battini, R., Ferrari, S., Kaczmarek, L., Calabretta, B., Chen, S. T., and Baserga, R. (1987). J. Biol. Chem. 262, 4355–4359.

    CAS  Google Scholar 

  • Bauer, M. K., Schubert, A., Rocks, O., and Grimm, S. (1999). J. Cell. Biol. 147, 1493–1502.

    Article  CAS  Google Scholar 

  • Buchet, K., and Godinot, C. (1998). J. Biol. Chem. 273, 22983–22989.

    Article  CAS  Google Scholar 

  • Burger, C., Wick, M., Brusselbach, S., and Muller, R. (1994). J. Cell. Sci. 107, 241–252.

    Google Scholar 

  • Bustamente, E., Morris, H. P., and Pedersen, P. L. (1977). Adv. Exp. Med. Biol. 92, 363–380.

    CAS  Google Scholar 

  • Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., and Schumacker, P. T. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 11715–11720.

    Article  CAS  Google Scholar 

  • Cuezva, J. M., Krajewska, M., de Heredia, M. L., Krajewski, S., Santamaria, G., Kim, H., Zapata, J. M., Marusawa, H., Chamorro, M., and Reed, J. C. (2002). Cancer Res. 62, 6674–6681.

    CAS  Google Scholar 

  • Delsite, R., Kachhap, S., Anbazhagan, R., Gabrielson, E., and Singh, K. K. (2002). Mol. Cancer 1, 6.

    Google Scholar 

  • Drgon, T., Sabova, L., Nelson, N., and Kolarov, J. (1991). FEBS Lett. 289, 159–162.

    Article  CAS  Google Scholar 

  • Duborjal, H., Beugnot, R., De Camaret, B. M., and Issartel, J. P. (2002). Genome Res. 12, 1901–1909.

    Article  CAS  Google Scholar 

  • Faure Vigny, H., Heddi, A., Giraud, S., Chautard, D., and Stepien, G. (1996). Mol. Carcinog. 16, 165–172.

    CAS  Google Scholar 

  • Giraud, S., Bonod-Bidaud, C., Wesolowski-Louvel, M., and Stepien, G. (1998). J. Mol. Biol. 281, 409–418.

    Article  CAS  Google Scholar 

  • Graham, B. H., Waymire, K. G., Cottrell, B., Trounce, I. A., MacGregor, G. R., and Wallace, D. C. (1997). Nat. Genet. 16, 226–234.

    Article  CAS  Google Scholar 

  • Groen, A. K., Wanders, R. J., Westerhoff, H. V., van der Meer, R., and Tager, J. M. (1982). J. Biol. Chem. 257, 2754–2757.

    CAS  Google Scholar 

  • Houldsworth, J., and Attardi, G. (1988). Proc. Natl. Acad. Sci. U.S.A. 85, 377–381.

    CAS  Google Scholar 

  • Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A., and Rizzuto, R. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 13807–13812.

    Article  CAS  Google Scholar 

  • Kaplan, R. S. (2001). J. Membr. Biol. 179, 165–183.

    Article  CAS  Google Scholar 

  • Kolarov, J., Kolarova, N., and Nelson, N. (1990). J. Biol. Chem. 265, 12711–12716.

    CAS  Google Scholar 

  • Kunz, W. S. (2003). Exp. Physiol. 88, 149–154.

    Article  CAS  Google Scholar 

  • Lee, I., Bender, E., and Kadenbach, B. (2002). Mol. Cell Biochem. 234–235, 63–70.

    Google Scholar 

  • Levy, S. E., Chen, Y. S., Graham, B. H., and Wallace, D. C. (2000). Gene 254, 57–66.

    Article  CAS  Google Scholar 

  • Liu, H., Hu, Y. P., Savaraj, N., Priebe, W., and Lampidis, T. J. (2001). Biochemistry 40, 5542–5547.

    CAS  Google Scholar 

  • Loiseau, D., Chevrollier, A., Douay, O., Vavasseur, F., Renier, G., Reynier, P., Malthiery, Y., and Stepien, G. (2002). Exp. Cell Res. 278, 12–18.

    Article  CAS  Google Scholar 

  • Lunardi, J., and Attardi, G. (1991). J. Biol. Chem. 266, 16534–16540.

    CAS  Google Scholar 

  • Marjanovic, S., Skog, S., Heiden, T., Tribukait, B., and Nelson, B. D. (1991). Exp. Cell Res. 193, 425–431.

    Article  CAS  Google Scholar 

  • Mathupala, S. P., Rempel, A., and Pedersen, P. L. (1995). J. Biol. Chem. 270, 16918–16925.

    CAS  Google Scholar 

  • Neckelmann, N., Li, K., Wade, R. P., Shuster, R., and Wallace, D. C. (1987). Proc. Natl. Acad. Sci. U.S.A. 84, 7580-7584.

    Google Scholar 

  • Netzker, R., Hermfisse, U., Wein, K. H., and Brand, K. (1994). Biochim. Biophys. Acta 1224, 371–376.

    Google Scholar 

  • Pastorino, J. G., Shulga, N., and Hoek, J. B. (2002). J. Biol. Chem. 277, 7610–7618.

    Article  CAS  Google Scholar 

  • Pevny, L. H., and Lovell-Badge, R. (1997). Curr. Opin. Genet. Dev. 7, 338–344.

    Article  CAS  Google Scholar 

  • Shepherd, D., and Garland, P. B. (1969). Biochem. J. 114, 597–610.

    CAS  Google Scholar 

  • Sokolikova, B., Sabova, L., Kissova, I., and Kolarov, J. (2000). Biochem. J. 352, 893–898.

    CAS  Google Scholar 

  • Stepien, G., Torroni, A., Chung, A., Hodge, J. A., and Wallace, D. C. (1992). J. Biol. Chem. 267, 14592–14597.

    CAS  Google Scholar 

  • Trinder, P. (1969). J. Clin. Pathol. 22, 158–161.

    CAS  Google Scholar 

  • Villani, G., Greco, M., Papa, S., and Attardi, G. (1998). J. Biol. Chem. 273, 31829–31836.

    Article  CAS  Google Scholar 

  • Vyssokikh, M. Y., and Brdiczka, D. (2003). Acta Biochim. Pol. 50, 389–404.

    CAS  Google Scholar 

  • Warburg, O. (1956). Science 123, 309–314.

    CAS  Google Scholar 

  • Zaid, A., Li, R., Luciakova, K., Barath, P., Nery, S., and Nelson, B. D. (1999). J. Bioenerg. Biomembr. 31, 129–135.

    Article  CAS  Google Scholar 

  • Zamora, M., Granell, M., Mampel, T., and Vinas, O. (2004). FEBS Lett. 563, 155–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Stepien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevrollier, A., Loiseau, D., Chabi, B. et al. ANT2 Isoform Required for Cancer Cell Glycolysis. J Bioenerg Biomembr 37, 307–317 (2005). https://doi.org/10.1007/s10863-005-8642-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-8642-5

Keywords

Navigation