Skip to main content

Advertisement

Log in

Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?

  • Mini Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Investigating the causes of increased aerobic glycolysis in tumors (Warburg Effect) has gone in and out of fashion many times since it was first described almost a century ago. The field is currently in ascendance due to two factors. Over a million FDG-PET studies have unequivocally identified increased glucose uptake as a hallmark of metastatic cancer in humans. These observations, combined with new molecular insights with HIF-1α and c-myc, have rekindled an interest in this important phenotype. A preponderance of work has been focused on the molecular mechanisms underlying this effect, with the expectation that a mechanistic understanding may lead to novel therapeutic approaches. There is also an implicit assumption that a mechanistic understanding, although fundamentally reductionist, will nonetheless lead to a more profound teleological understanding of the need for altered metabolism in invasive cancers. In this communication, we describe an alternative approach that begins with teleology; i.e. adaptive landscapes and selection pressures that promote emergence of aerobic glycolysis during the somatic evolution of invasive cancer. Mathematical models and empirical observations are used to define the adaptive advantage of aerobic glycolysis that would explain its remarkable prevalence in human cancers. These studies have led to the hypothesis that increased consumption of glucose in metastatic lesions is not used for substantial energy production via Embden-Meyerhoff glycolysis, but rather for production of acid, which gives the cancer cells a competitive advantage for invasion. Alternative hypotheses, wherein the glucose is used for generation of reducing equivalents (NADPH) or anabolic precursors (ribose) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186

    Article  Google Scholar 

  • Baudelet C et al (2004) Physiological noise in murine solid tumors using T2*-weighted gradient echo imaging: a marker for tumor acute hypoxia? Phys Med Biol 49:3389–3411

    Article  Google Scholar 

  • Beckner ME et al (2005) Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of P13K and gluconeogenesis. Lab Invest 85:1457–1470

    Article  CAS  Google Scholar 

  • Bhujwalla ZM et al (2001) The physiological environment in cancer vascularization, invasion and metastasis. Novartis Found Symp 240:23–38

    Google Scholar 

  • Bhujwalla ZM et al (2002) Combined vascular and extracellular pH imaging of solid tumors. NMR in Biomed 15(2):114–119

    Article  CAS  Google Scholar 

  • Bos R (2002) Biologic correlates of (18) fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  CAS  Google Scholar 

  • Braun RD, Lanzel JL, Dewhirst MW (1999) Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am J Physiol 277:t–68

    Google Scholar 

  • Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer theraphy. Cancer Res 58:1408–1416

    CAS  Google Scholar 

  • Brurberg KG, Thuen M, Ruud EB, Rofstad EK (2006) Fluctuations in p02 in irradiated human melanoma xenografts. Radiat Res 165:16–25

    Article  CAS  Google Scholar 

  • Cherk MH et al. (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J Nucl Med 47:1921–1926

    CAS  Google Scholar 

  • Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Ann Rev Med 53:89–112

    Article  CAS  Google Scholar 

  • Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    Article  CAS  Google Scholar 

  • Dang CV, Lewis BC, Dolde C, Dang G, Shim H (1997) Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembranes 29:345–354

    Article  CAS  Google Scholar 

  • De Jaeger K et al (1998) Heterogeneity of tumor oxygenation: relationship to tumor necrosis, tumor size, and metastasis. Int J Radiat Oncol Biol Phys 42:717–721

    Article  Google Scholar 

  • Elstrom, RL et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892-3899

    Article  CAS  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  Google Scholar 

  • Folkman J, Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651

    Article  CAS  Google Scholar 

  • Fyles A et al (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. [see comment]. J Clin Oncol 20:680–687

    Article  CAS  Google Scholar 

  • Fyles AW, Milosevic M, Pintilie M, Hill RP (1998) Cervix cancer oxygenation measured following external radiation therapy. Int J Radiat Oncol Biol Phys 42:751–753

    Article  CAS  Google Scholar 

  • Garcia M et al (1996) Biological and clinical significance of cathepsin D in breast cancer metastasis. Stem Cells 14:642–650

    Article  CAS  Google Scholar 

  • Gatenby RA (1998) Mathematical models of tumor-host interactions. Cancer J 11:2–6

    Google Scholar 

  • Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753

    CAS  Google Scholar 

  • Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acidmediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–5223

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  Google Scholar 

  • Gatenby RA, Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63:6212–6220

    CAS  Google Scholar 

  • Gillies RJ, Raghunand N, Karczmar GA, Bhujwalla ZM (2002) MR Imaging of the tumor microenvironment. J Magn Reson Imag 15

  • Green SL, Giaccia AJ (1998) Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy.Cancer J Sci Am 4:218–223

    CAS  Google Scholar 

  • Griffiths JR, McIntyre DJ, Howe FA, Stubbs M (2001) Why are cancers acidic? A carrier-mediated diffusion model for H+ transport in the interstitial fluid. Novartis Found Symp 240:46–62; discussion 62–7, 152–3

    CAS  Google Scholar 

  • Griguer CE et al (2005) Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neuro-Oncol 74:123–133

    Article  CAS  Google Scholar 

  • Guppy M et al (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364:309–315

    CAS  Google Scholar 

  • Haugland HK et al (2002) Expression of hypoxia-inducible factor-1alpha in cervical carcinomas: correlation with tumor oxygenation. Int J Radiat Oncol Biol Phys 53:854–861

    Article  CAS  Google Scholar 

  • Hawkins RA, Phelps ME (1988) PET in clinical oncology. Cancer Metastasis Rev 7:119–142

    Article  CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  CAS  Google Scholar 

  • Hill RP, De Jaeger K, Jang A, Cairns R (2001) pH, hypoxia and metastasis. Novartis Found Symp 240:154–165

    Article  CAS  Google Scholar 

  • Jang A, Hill RP (1997) An examination of the effects of hypoxia, acidosis, and glucose starvation on the expression of metastasis-associated genes in murine tumor cells. Clin Exp Metastasis 15:469–483

    Article  CAS  Google Scholar 

  • Kapp DS, Giaccia AJ (1996) New directions for radiation biology research in cancer of the uterine cervix. J Natl Cancer Inst Monographs 131–139

  • Kavanagh MC, Sun A, Hu Q, Hill RP (1996) Comparing techniques of measuring tumor hypoxia in different murine tumors: eppendorf pO2 Histograph, [3H]misonidazole binding and paired survival assay. Radiat Res 145:491–500

    Article  CAS  Google Scholar 

  • Kelloff GJ et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  CAS  Google Scholar 

  • Krogh A (1919a) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415

    CAS  Google Scholar 

  • Krogh A (1919b) The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol 52:391–408

    CAS  Google Scholar 

  • Langbein S et al (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94:578–585

    Article  CAS  Google Scholar 

  • Le QT et al (2003) Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. [see comment]. Clin Cancer Res 9:59–67

    CAS  Google Scholar 

  • Montcourrier P et al (1994) Characterization of very acidic phagosomes in breast cancer cells and their association with invasion. J Cell Sci 107:2381–2391

    Google Scholar 

  • Montcourrier P, Silver I, Farnoud R, Bird I, Rochefort H (1997) Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp. Metastasis 15, 382-392

    Google Scholar 

  • Naumov GN et al (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    CAS  Google Scholar 

  • Osthus RC et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800

    Article  CAS  Google Scholar 

  • Patel AA et al. (2000) Cancer J

  • Pelicano H et al (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  Google Scholar 

  • Rajendran JG et al (2003) [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nuclear Med Mol Imag 30:695–704

    Article  CAS  Google Scholar 

  • Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ (2005) Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 7:324–330

    Article  CAS  Google Scholar 

  • Rochefort H, Liaudet E, Garcia M (1996) Alterations and role of human cathepsin D in cancer metastasis. Enzyme Protein 49:106–116

    CAS  Google Scholar 

  • Rofstad EK et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Can Res 66:6699–6707

    Article  CAS  Google Scholar 

  • Rozhin J, Sameni M, Ziegler G, Sloane BF (1994) Pericellular pH affects distribution and secretion of cathepsin B in Malignant Cells. Cancer Res 54:6517–6525

    CAS  Google Scholar 

  • Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastasic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64:663–670

    CAS  Google Scholar 

  • Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H + diffusion to the acidic pH of tumors. Neoplasia (New York) 5:135–145

    CAS  Google Scholar 

  • Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103

    Article  CAS  Google Scholar 

  • Semenza GL et al (2001) 'The metabolism of tumours': 70 years later. Novartis Found Symp 240:251–260

    CAS  Google Scholar 

  • Semenza GL (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Internal Medicine 41:79–83

    CAS  Google Scholar 

  • Serkova N, Boros LG, Serkova N, Boros LG (2005) Detection of resistance to imatinib by metabolic profiling: clinical and drug development implications. Am J PharmacoGenomics 5:293–302

    Article  CAS  Google Scholar 

  • Smallbone K, Gavaghan DJ, Gatenby RA, Maini PK (2005) The role of acidity in solid tumour growth and invasion. J Theor Biol 235:476–484

    Article  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    CAS  Google Scholar 

  • Turner GA (1979) Increased release of tumour cells by collagenase at acidic pH: a possible mechanisms for metastasis. Experientia 35:1657–1658

    Article  CAS  Google Scholar 

  • Wykoff CC et al (2001) Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. Am J Pathol 158:1011–1019

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Gillies.

Additional information

Supported by NIH Grants R01 CA 077575 (RJG), and CA 093650 (RAG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillies, R.J., Gatenby, R.A. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?. J Bioenerg Biomembr 39, 251–257 (2007). https://doi.org/10.1007/s10863-007-9085-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9085-y

Keywords

Navigation