Skip to main content
Log in

The long physiological reach of the yeast vacuolar H+-ATPase

  • Transport ATPases: Structure, Mechanism and Relevance to Multiple Diseases
  • V-Type ATPases
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

V-ATPases are structurally conserved and functionally versatile proton pumps found in all eukaryotes. The yeast V-ATPase has emerged as a major model system, in part because yeast mutants lacking V-ATPase subunits (vma mutants) are viable and exhibit a distinctive Vma- phenotype. Yeast vma mutants are present in ordered collections of all non-essential yeast deletion mutants, and a number of additional phenotypes of these mutants have emerged in recent years from genomic screens. This review summarizes the many phenotypes that have been associated with vma mutants through genomic screening. The results suggest that V-ATPase activity is important for an unexpectedly wide range of cellular processes. For example, vma mutants are hypersensitive to multiple forms of oxidative stress, suggesting an antioxidant role for the V-ATPase. Consistent with such a role, vma mutants display oxidative protein damage and elevated levels of reactive oxygen species, even in the absence of an exogenous oxidant. This endogenous oxidative stress does not originate at the electron transport chain, and may be extra-mitochondrial, perhaps linked to defective metal ion homeostasis in the absence of a functional V-ATPase. Taken together, genomic data indicate that the physiological reach of the V-ATPase is much longer than anticipated. Further biochemical and genetic dissection is necessary to distinguish those physiological effects arising directly from the enzyme’s core functions in proton pumping and organelle acidification from those that reflect broader requirements for cellular pH homeostasis or alternative functions of V-ATPase subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan AK, Du J, Davies SA, Dow JA (2005) Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol Genomics 22:128–138

    Article  CAS  Google Scholar 

  • Belli G, Molina MM, Garcia-Martinez J, Perez-Ortin JE, Herrero E (2004) Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes. J Biol Chem 279:12386–12395

    Article  CAS  Google Scholar 

  • Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13:2486–2501

    Article  CAS  Google Scholar 

  • Borthwick KJ, Karet FE (2002) Inherited disorders of the H+-ATPase. Curr Opin Nephrol Hypertens 11:563–568

    Article  Google Scholar 

  • Breton S, Brown D (2007) New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 292:F1–F10

    Article  CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  CAS  Google Scholar 

  • Coleman ST, Epping EA, Steggerda SM, Moye-Rowley WS (1999) Yap1p activates gene transcription in an oxidant-specific fashion. Mol Cell Biol 19:8302–8313

    CAS  Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    CAS  Google Scholar 

  • Davis-Kaplan SR, Ward DM, Shiflett SL, Kaplan J (2004) Genome-wide analysis of irondependent growth reveals a novel yeast gene required for vacuolar acidification. J Biol Chem 281:32025–32035

    Article  Google Scholar 

  • Davis-Kaplan SR, Compton MA, Flannery AR, Ward DM, Kaplan J, Stevens TH, Graham LA (2006) PKR1 encodes an assembly factor for the yeast V-type ATPase. J Biol Chem 279:4322–4329 Epub 2003 Nov 4321

    Article  Google Scholar 

  • De Milito A, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML, Federici C, Perdicchio M, Matarrese P, Lugini L, Nilsson A, Fais S (2007) Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 67:5408–5417

    Article  Google Scholar 

  • Dirmeier R, O’Brien KM, Engle M, Dodd A, Spears E, Poyton RO (2002) Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 277:34773–34784

    Article  CAS  Google Scholar 

  • Eide DJ, Bridgham JT, Zhao Z, Mattoon JR (1993) The vacuolar H(+)-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241:447–456

    Article  CAS  Google Scholar 

  • Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77

    Article  Google Scholar 

  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750

    Article  CAS  Google Scholar 

  • Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals 11:101–106

    Article  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  Google Scholar 

  • Graham LA, Hill KJ, Stevens TH (1998) Assembly of the yeast vacuolar H+-ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex. J Cell Biol 142:39–49

    Article  CAS  Google Scholar 

  • Hamilton CA, Taylor GJ, Good AG (2002) Vacuolar H(+)-ATPase, but not mitochondrial F(1)F(0)-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 208:227–232

    Article  CAS  Google Scholar 

  • Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15:767–776

    Article  CAS  Google Scholar 

  • Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  CAS  Google Scholar 

  • Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    Article  CAS  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936

    Article  CAS  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    CAS  Google Scholar 

  • Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046

    Article  CAS  Google Scholar 

  • Lesuisse E, Knight SA, Courel M, Santos R, Camadro JM, Dancis A (2005) Genome-Wide Screen for Genes With Effects on Distinct Iron Uptake Activities in Saccharomyces cerevisiae. Genetics 169:107–122

    Article  CAS  Google Scholar 

  • Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:22181–22187

    Article  CAS  Google Scholar 

  • Liao C, Hu B, Arno MJ, Panaretou B (2007) Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin. Mol Pharmacol 71:416–425

    Article  CAS  Google Scholar 

  • Manabe T, Yoshimori T, Henomatsu N, Tashiro Y (1993) Inhibitors of vacuolar-type H(+)-ATPase suppresses proliferation of cultured cells. J Cell Physiol 157:445–452

    Article  CAS  Google Scholar 

  • Milgrom E, Diab H, Middleton F, Kane PM (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J Biol Chem 282:7125–7136

    Article  CAS  Google Scholar 

  • Munhoz DC, Netto LE (2004) Cytosolic thioredoxin peroxidase I and II are important defenses of yeast against organic hydroperoxide insult: catalases and peroxiredoxins cooperate in the decomposition of H2O2 by yeast. J Biol Chem 279:35219–35227

    Article  CAS  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (h+)-ATPases - nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  Google Scholar 

  • Nishihara T, Akifusa S, Koseki T, Kato S, Muro M, Hanada N (1995) Specific inhibitors of vacuolar type H(+)-ATPases induce apoptotic cell death. Biochem Biophys Res Commun 212:255–262

    Article  CAS  Google Scholar 

  • O’Brien KM, Dirmeier R, Engle M, Poyton RO (2004) Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. J Biol Chem 279:51817–51827

    Article  CAS  Google Scholar 

  • Okahashi N, Nakamura I, Jimi E, Koide M, Suda T, Nishihara T (1997) Specific inhibitors of vacuolar H(+)-ATPase trigger apoptotic cell death of osteoclasts. J Bone Miner Res 12:1116–1123

    Article  CAS  Google Scholar 

  • Outten CE, Falk RL, Culotta VC (2005) Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J

  • Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275:5723–5732

    Article  CAS  Google Scholar 

  • Paroutis P, Touret N, Grinstein S (2004) The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 19:207–215

    CAS  Google Scholar 

  • Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69

    Article  CAS  Google Scholar 

  • Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Article  CAS  Google Scholar 

  • Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA (2006) Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci 119:4554–4564

    Article  CAS  Google Scholar 

  • Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 17:387–401

    Article  CAS  Google Scholar 

  • Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13

    Article  CAS  Google Scholar 

  • Sambade M, Kane PM (2004) The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. Genetics 170:1539–1551

    Google Scholar 

  • Sambade M, Alba M, Smardon AM, West RW, Kane PM (2005) A genomic screen for yeast vacuolar membrane ATPase mutants. J Biol Chem 279:17361–17365

    Article  CAS  Google Scholar 

  • Seeley ES, Kato M, Margolis N, Wickner W, Eitzen G (2002) Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 13:782–794

    Article  CAS  Google Scholar 

  • Serrano R, Bernal D, Simon E, Arino J (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279:19698–19704. Epub 12004 Mar 19601

    Article  CAS  Google Scholar 

  • Sun-Wada G, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M (2000) Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228:315–325

    Article  CAS  Google Scholar 

  • Swallow CJ, Grinstein S, Sudsbury RA, Rotstein OD (1991) Cytoplasmic pH regulation in monocytes and macrophages: mechanisms and functional implications. Clin Invest Med 14:367–378

    CAS  Google Scholar 

  • Swallow CJ, Grinstein S, Sudsbury RA, Rotstein OD (1993) Relative roles of Na+/H+ exchange and vacuolar-type H+ ATPases in regulating cytoplasmic pH and function in murine peritoneal macrophages. J Cell Physiol 157:453–460

    Article  CAS  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  CAS  Google Scholar 

  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A 101:6564–6569

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Wieczorek H, Brown D, Grinstein S, Ehrenfeld J, Harvey WR (1999) Animal plasma membrane energization by proton-motive V-ATPases. Bioessays 21:637–648

    Article  CAS  Google Scholar 

  • Wilson WA, Wang Z, Roach PJ (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1:232–242

    Article  CAS  Google Scholar 

  • Yadav J, Muend S, Zhang Y, Rao R (2007) A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18:1480–1489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Kane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kane, P.M. The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39, 415–421 (2007). https://doi.org/10.1007/s10863-007-9112-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9112-z

Keywords

Navigation