Skip to main content
Log in

Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Oxidative stress promotes Ca2+-dependent opening of the mitochondrial inner membrane permeability transition pore (PTP), causing bioenergetic failure and subsequent cell death in many paradigms, including those related to acute brain injury. One approach to pre-conditioning against oxidative stress is pharmacologic activation of the Nrf2/ARE pathway of antioxidant gene expression by agents such as sulforaphane (SFP). This study tested the hypothesis that administration of SFP to normal rats increases resistance of isolated brain mitochondria to redox-sensitive PTP opening. SFP or DMSO vehicle was administered intraperitoneally to adult male rats at 10 mg/kg 40 h prior to isolation of non-synaptic brain mitochondria. Mitochondria were suspended in medium containing a respiratory substrate and were exposed to an addition of Ca2+ below the threshold for PTP opening. Subsequent addition of tert-butyl hydroperoxide (tBOOH) resulted in a cyclosporin A-inhibitable release of accumulated Ca2+ into the medium, as monitored by an increase in fluorescence of Calcium Green 5N within the medium, and was preceded by a decrease in the autofluorescence of mitochondrial NAD(P)H. SFP treatment significantly reduced the rate of tBOOH-induced Ca2+ release but did not affect NAD(P)H oxidation or inhibit PTP opening induced by the addition of phenylarsine oxide, a direct sulfhydryl oxidizing agent. SFP treatment had no effect on respiration by brain mitochondria and had no effect on PTP opening or respiration when added directly to isolated mitochondria. We conclude that SFP confers resistance of brain mitochondria to redox-regulated PTP opening, which could contribute to neuroprotection observed with SFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akao M, O’Rourke B, Teshima Y, Seharaseyon J, Marban E (2003) Circ Res 92:186–194

    Article  CAS  Google Scholar 

  • Andreyev A, Fahy B, Fiskum G (1998) FEBS Lett 439:373–376

    Article  CAS  Google Scholar 

  • Angeloni C, Leoncini E, Malaguti M, Angelini S, Hrelia P, Hrelia S (2009) J Agric Food Chem 57:5615–5622

    Article  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Nature 434:658–662

    Article  CAS  Google Scholar 

  • Catisti R, Vercesi AE (1999) FEBS Lett 464:97–101

    Article  CAS  Google Scholar 

  • Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G (2000) Oncogene 19:307–314

    Article  CAS  Google Scholar 

  • Crane MS, Howie AF, Arthur JR, Nicol F, Crosley LK, Beckett GJ (2009) Biochim Biophys Acta 1790:1191–1197

    CAS  Google Scholar 

  • Danilov CA, Chandrasekaran K, Racz J, Soane L, Zielke C, Fiskum G (2009) Glia 57:645–656

    Article  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2008) Mol Nutr Food Res 52(Suppl 1):S128–S138

    Google Scholar 

  • Duchen MR (1992) Biochem J 283:41–50

    CAS  Google Scholar 

  • Fiskum G, Murphy AN, Beal MF (1999) J Cereb Blood Flow Metab 19:351–369

    Article  CAS  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) Biochimie 84:153–166

    Article  CAS  Google Scholar 

  • Jaiswal AK (2004) Free Radic Biol Med 36:1199–1207

    Article  CAS  Google Scholar 

  • Kensler TW, Curphey TJ, Maxiutenko Y, Roebuck BD (2000) Drug Metabol Drug Interact 17:3–22

    CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE, Fiskum G (2000) Cell Death Differ 7:903–910

    Article  CAS  Google Scholar 

  • Kristian T, Siesjo BK (1998) Stroke 29:705–718

    CAS  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Biochim Biophys Acta 1787:1395–1401

    Article  CAS  Google Scholar 

  • Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ, Knoops B (2009) Arch Biochem Biophys 491:39–45

    Article  CAS  Google Scholar 

  • Mirandola SR, Melo DR, Saito A, Castilho RF (2010) J Neurosci Res 88:630–639

    CAS  Google Scholar 

  • Mukherjee S, Gangopadhyay H, Das DK (2008) J Agric Food Chem 56:609–617

    Article  CAS  Google Scholar 

  • Mukherjee S, Lekli I, Ray D, Gangopadhyay H, Raychaudhuri U, Das DK (2010) Br J Nutr 103:815–823

    Article  CAS  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006) FASEB J 20:506–508

    CAS  Google Scholar 

  • Navarro A, Boveris A (2009) Brain mitochondrial dysfunction and oxidative damage in Parkinson’s disease. J Bioenerg Biomembr 41:517–521

    Article  CAS  Google Scholar 

  • Navet R, Mouithys-Mickalad A, Douette P, Sluse-Goffart CM, Jarmuszkiewicz W, Sluse FE (2006) J Bioenerg Biomembr 38:23–32

    Article  CAS  Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) J Neurochem 109(Suppl 1):133–138

    Article  CAS  Google Scholar 

  • Okonkwo DO, Povlishock JT (1999) J Cereb Blood Flow Metab 19:443–451

    Article  CAS  Google Scholar 

  • Petronilli V, Sileikyte J, Zulian A, bbeni-Sala F, Jori G, Gobbo S, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2009) Biochim Biophys Acta 1787:897–904

    Article  CAS  Google Scholar 

  • Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009) Free Radic Biol Med 47:969–974

    Article  CAS  Google Scholar 

  • Rasola A, Bernardi P (2007) Apoptosis 12:815–833

    Article  CAS  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Proc Natl Acad Sci USA 102:12005–12010

    Article  CAS  Google Scholar 

  • Siebert A, Desai V, Chandrasekaran K, Fiskum G, Jafri MS (2009) J Neurosci Res 87:1659–1669

    Article  CAS  Google Scholar 

  • Soane L, Li DW, Fiskum G, Bambrick LL (2010) J Neurosci Res 88:1355–1363

    CAS  Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Cell Calcium 36:257–264

    Article  CAS  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Cancer Res 62:5196–5203

    CAS  Google Scholar 

  • Vauzour D, Buonfiglio M, Corona G, Chirafisi J, Vafeiadou K, Angeloni C, Hrelia S, Hrelia P, Spencer JP (2010) Mol Nutr Food Res 54:532–542

    Article  CAS  Google Scholar 

  • Zhang Y, Talalay P, Cho CG, Posner GH (1992) Proc Natl Acad Sci USA 89:2399–2403

    Article  CAS  Google Scholar 

  • Zhao J, Moore AN, Clifton GL, Dash PK (2005) J Neurosci Res 82:499–506

    Article  CAS  Google Scholar 

  • Zhao J, Kobori N, Aronowski J, Dash PK (2006) Neurosci Lett 393:108–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Fiskum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, T., Fiskum, G. Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition. J Bioenerg Biomembr 42, 491–497 (2010). https://doi.org/10.1007/s10863-010-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9312-9

Keywords

Navigation