Skip to main content
Log in

Dielectric Properties of Yeast Cells Expressed With the Motor Protein Prestin

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We report on the linear and nonlinear dielectric properties of budding yeast (S. cerevisiae) cells, one strain of which has been genetically modified to express prestin. This motor protein plays a crucial role in the large electromotility exhibited by the outer hair cells of mammalian inner ears. Live cell suspensions exhibit enormous dielectric responses, which can be used to probe metabolic activity, membrane potential, and other properties. The aims of this study are: (1) to compare the dielectric responses of organisms expressing prestin from those of control specimens, and (2) ultimately to further develop dielectric response as a tool to study live cells, proteins, and lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Schwan, H.P.: Electrical Properties of Tissue and Cell Suspensions, in J.A. Lawrence and C.A. Tobias (eds.), Advances in Biological and Medical Physics, Vol. V, New York, Academic Press, 1957, pp. 147–209.

  • Asami, K., Hanai, T. and Koizumi, N.: Dielectric Properties of Yeast Cells: Effect of Some Ionic Detergents on the Plasma Membranes, Journal of Membrane Biology 34 (1977), 145–156.

    Google Scholar 

  • For a recent review see Asami, K.: Characterization of Biological Cells by Dielectric Spectroscopy, J. Non-Crystalline Solids 305 (2002), 268–277.

    Google Scholar 

  • Prodan, C. and Prodan, E.: The Dielectric Behaviour of Living Cell Suspensions, J. Phys. D: Applied Phys. 32 (1999), 335–343.

    Article  ADS  MathSciNet  Google Scholar 

  • Prodan, C.: Dielectric Properties of Live Cell Suspensions, Ph.D. Dissertation, University of Houston (2003).

  • Prodan, C., Claycomb, J.R., Prodan, E. and Miller, J.H., Jr.: High-T c SQUID-Based Impedance Spectroscopy of Living Cells Suspensions, Physica C 341348 (2000), 2693–2694.

  • Prodan, C., Mayo, F., Claycomb, J.R., Miller, J.H., Jr. and Benedik, M.J.: Low-Frequency, Low-Field Dielectric Spectroscopy of Living Cell Suspensions, J. Appl. Phys. 95 (2004), 3754–3756.

    Article  ADS  Google Scholar 

  • Woodward, A.M. and Kell, D.B.: On the Nonlinear Dielectric Properties of Biological Systems. Saccharomyces cerevisiae, Bioelectrochem. & Bioenerg. 24 (1990), 83–100.

    Google Scholar 

  • Woodward, A.M. and Kell, D.B.: Dual-Frequency Excitation: A Novel Method for Probing the Nonlinear Dielectric Properties of Biological Systems, and its Application to Suspensions of S. cerevisiae, Bioelectrochem. & Bioenerg. 25 (1991), 395–413.

  • Jonscher, A.K.: The ‘Universal’ Dielectric Response, Nature 267 (1977), 673–679.

    Article  ADS  Google Scholar 

  • Raicu, V.: Dielectric Dispersion of Biological Matter: Model Combining Debye-Type and ‘Universal’ Responses, Phys. Rev. E 60 (1999), 4677–4680.

    Article  ADS  Google Scholar 

  • Raicu, V., Sato, T. and Raicu, G.: Non-Debye Dielectric Relaxation in Biological Structures Arises From Their Fractal Nature, Phy. Rev. E 64 (2001), 021916-1–10.

    Google Scholar 

  • Brownell, W.E., Bader, C.R., Bertrand, D. and De Ribaupierre, Y.: Evoked Mechanical Responses of Isolated Cochlear Outer Hair Cells, Science 227 (1985), 194–196.

    ADS  Google Scholar 

  • Kachar, B., Brownell, W.E., Altschuler, R. and Fox, J.: Electrokinetic Shape Changes of Cochlear Outer Hair Cells, Nature 322 (1986), 365–368.

    Article  ADS  Google Scholar 

  • Hudspeth, A.J. and Corey, D.P.: Sensitivity, Polarity, and Conductance Change in the Response of Vertebrate Hair Cells to Controlled Mechanical Stimuli, Proc. Nat. Acad. Sci. USA 74 (1977), 2407–2411.

    ADS  Google Scholar 

  • Brownell, W.E., Spector, A.A., Raphael, R.M. and Popel, A.S.: Micro- and nanomechanics of the Cochlear Outer Hair Cells, Annu. Rev. Biomed. Eng. 3 (2001), 169–194.

    Article  Google Scholar 

  • Zheng, J., Shen, W., He, D.Z.Z., Long, K., Madison, L.D. and Dallos, P.: Prestin is the Motor Protein of Cochlear Outer Hair Cells, Nature 405 (2000), 149–155.

    Article  ADS  Google Scholar 

  • Dallos, P. and Fakler, B.: Prestin, a New Type of Motor Protein, Nature Rev.: Mol. Cell Biol. 3 (2002), 104–111.

    Article  Google Scholar 

  • Oliver, D., He, D.Z.Z., Klöcker, N., Ludwig, J., Schulte, U., Waldegger, S., Ruppersberg, J.P., Dallos, P. and Fakler, B.: Intracellular Anions as the Voltage-Sensor of Prestin, the Outer Hair Cell Motor Protein, Science 292 (2001), 2340–2343.

    Article  Google Scholar 

  • Ashmore, J.F.: Forward and Reverse Transduction in Guinea-pig Outer Hair Cells: The Cellular Basis of the Cochlear Amplifier, Neurosci. Res. Suppl. 12 (1990), S39–S50.

    Google Scholar 

  • Santos-Sachhi, J.: Reversible Inhibition of Voltage-Dependent Outer Hair Cell Motility and Capacitance, J. Neurosci. 11 (1991), 3096–3110.

    Google Scholar 

  • Rabbitt, R.D., Ayliffe, H.E., Christensen, D., Pamarthy, K., Durney, C., Clifford, S. and Brownell, W.E.: Evidence of Piezoelectric Resonance in Isolated Outer Hair Cells, Biophys. J. 88 (2005), 2257–2265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Miller Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.H., Nawarathna, D., Warmflash, D. et al. Dielectric Properties of Yeast Cells Expressed With the Motor Protein Prestin. J Biol Phys 31, 465–475 (2005). https://doi.org/10.1007/s10867-005-6064-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-6064-6

Key words

Navigation