Skip to main content
Log in

Effect of Calcium on Electrical Energy Transfer by Microtubules

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Microtubules (MTs) are important cytoskeletal superstructures implicated in neuronal morphology and function, which are involved in vesicle trafficking, neurite formation and differentiation and other morphological changes. The structural and functional properties of MTs depend on their high intrinsic charge density and functional regulation by the MT depolymerising properties of changes in Ca2 +  concentration. Recently, we reported on remarkable properties of isolated MTs, which behave as biomolecular transistors capable of amplifying electrical signals (Priel et al., Biophys J 90:4639–4643, 2006). Here, we demonstrate that MT-bathing (cytoplasmic) Ca2 +  concentrations modulate the electrodynamic properties of MTs. Electrical amplification by MTs was exponentially dependent on the Ca2 +  concentration between 10 − 7 and 10 − 2 M. However, the electrical connectivity (coupling) of MTs was optimal at a narrower window of Ca2 +  concentrations. We observed that while raising bathing Ca2 +  concentration increased electrical amplification by MTs, energy transfer was highest in the presence of ethylene glycol tetraacetic acid (lowest Ca2 +  concentration). Our data indicate that Ca2 +  is an important modulator of electrical amplification by MTs, supporting the hypothesis that this divalent cation, which adsorbs onto the polymer’s surface, plays an important role as a regulator of the electrical properties of MTs. The Ca2 + -dependent ability of MTs to modulate and amplify electrical signals may provide a novel means of cell signaling, likely contributing to neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dustin, P.: Microtubules. Springer, Berlin (1984)

    Google Scholar 

  2. Inclán, Y., Nogales, E.: Potential for self-assembly and microtubule interaction of α-, β- and γ-tubulin. J. Cell Sci. 114, 413–422 (2000)

    Google Scholar 

  3. Li, H., DeRosier, D.J., Nicholson, W.V., Nogales, E., Downing, K.H.: Microtubule structure at 8 Angstrom resolution. Structure 10, 1317–1328 (2002). doi:10.1016/S0969-2126(02)00827-4

    Article  Google Scholar 

  4. Desai, A., Mitchison, T.J.: Microtubule polymerization dynamics. Annu. Rev. Dev. Biol. 13, 83–117 (1997). doi:10.1146/annurev.cellbio.13.1.83

    Article  Google Scholar 

  5. Nogales, E.: Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277–302 (2000). doi:10.1146/annurev.biochem.69.1.277

    Article  MathSciNet  Google Scholar 

  6. Minoura, I., Muto, E.: Dielectric measurement of individual microtubules using the eletroorientation method. Biophys. J. 90, 3739–3748 (2006). doi:10.1529/biophysj.105.071324

    Article  ADS  Google Scholar 

  7. Van den Heuvel, M.G., de Graaf, M.P., Dekker, C.: Molecular sorting by electrical steering of microtubules in kinesin-coated channels. Science 312, 910–914 (2006). doi:10.1126/science.1124258

    Article  ADS  Google Scholar 

  8. Vassilev, P., Kanazirska, M., Tien, H.T.: Intermembrane linkage mediated by tubulin. Biochem. Biophys. Res. Commun. 126, 559–565 (1985). doi:10.1016/0006-291X(85)90642-4

    Article  Google Scholar 

  9. Stracke, R., Bohm, K.J., Wollweber, L., Tuszynski, J.A., Unger, E.: Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Commun. 293, 602–609 (2002). doi:10.1016/S0006-291X(02)00251-6

    Article  Google Scholar 

  10. Priel, A., Ramos, A.J., Tuszynski, J.A., Cantiello, H.F.: A biopolymer transistor: electrical amplification by microtubules. Biophys. J. 90, 4639–4643 (2006). doi:10.1529/biophysj.105.078915

    Article  ADS  Google Scholar 

  11. Patton, C., Thompson, S., Epel, D.: Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 35, 427–431 (2004). doi:10.1016/j.ceca.2003.10.006

    Article  Google Scholar 

  12. O’Brien, E.T., Salmon, E.D., Erickson, H.P.: How calcium causes microtubule depolymerization. Cell Motil. Cytos. 36, 125–135 (1997). doi:10.1002/(SICI)1097-0169(1997)36:2<125::AID-CM3>3.0.CO;2–8

    Article  Google Scholar 

  13. Regehr, W.G., Tank, D.W.: Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J. Neurosci. 12(11), 4202–4223 (1992)

    Google Scholar 

  14. Zarkovic, M., Henquin, J.C.: Synchronization and entrainment of cytoplasmic Ca2 +  oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Am. J. Physiol. Endocrinol. Metab. 287, E340–E347 (2004). doi:10.1152/ajpendo.00069.2004

    Article  Google Scholar 

  15. Hallaq, H.A., Haupert Jr., G.T.: Positive inotropic effects of the endogenous Na + /K + -transporting ATPase inhibitor from the hypothalamus. Proc. Natl. Acad. Sci. USA 86, 10080–10084 (1989). doi:10.1073/pnas.86.24.10080

    Article  ADS  Google Scholar 

  16. Calaghan, S.C., Le Guennec, J.Y., White, E.: Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog. Biophys. Mol. Biol. 84, 29–59 (2004). doi:10.1016/S0079-6107(03)00057-9

    Article  Google Scholar 

  17. Karr, T.L., Kristofferson, D., Purich, D.L.: Calcium ion induces endwise depolymerization of bovine brain microtubules. J. Biol. Chem. 255, 11853–11856 (1980)

    Google Scholar 

  18. Astier, Y., Bayley, H., Howorka, S.: Protein components for nanodevices. Curr. Opin. Chem. Biol. 9, 576–584 (2005)

    Google Scholar 

  19. Vizcarra, C.L., Mayo, S.L.: Electrostatics in computational protein design. Curr. Opin. Chem. Biol. 9, 622–626 (2005)

    Google Scholar 

  20. Sheetz, M.P., Steuer, E.R., Schroer, T.A.: The mechanism and regulation of fast axonal transport. Trends Pharmacol. Sci. 12, 474–478 (1989)

    Google Scholar 

  21. Baas, P.W., Deitch, J.S., Black, M.M., Banker, G.A.: Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339 (1988). doi:10.1073/pnas.85.21.8335

    Article  ADS  Google Scholar 

  22. Burton, P.R.: Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 473, 107–115 (1988). doi:10.1016/0006-8993(88)90321-6

    Article  ADS  Google Scholar 

  23. Brady, S.T., Lasek, R.J., Allen, R.D.: Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil. 5, 81–101 (1985). doi:10.1002/cm.970050203

    Article  Google Scholar 

  24. McNiven, M.A., Ward, J.B.: Calcium regulation of pigment transport in vitro. J. Cell Biol. 106, 111–125 (1988). doi:10.1083/jcb.106.1.111

    Article  Google Scholar 

  25. Smith, R.S., Bisby, M.A. (eds.): Axonal Transport. In: Neurology and Neurobiology, vol. 25, pp. 311–26. Alan R. Liss, New York (1987)

  26. Tyner, K.M., Kopelman, R., Philbert, M.A.: “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93, 1163–1174 (2007). doi:10.1529/biophysj.106.092452

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding from NSERC (Canada), MITACS and Technology Innovations, LLC of Rochester, NY, USA supported this research (AP & JT). HC was partially funded by the PKD Foundation. AJR is the recipient of a PKD Foundation postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio F. Cantiello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priel, A., Ramos, A.J., Tuszynski, J.A. et al. Effect of Calcium on Electrical Energy Transfer by Microtubules. J Biol Phys 34, 475–485 (2008). https://doi.org/10.1007/s10867-008-9106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9106-z

Keywords

Navigation