Skip to main content

Advertisement

Log in

Vα14i NKT Cells Are Innate Lymphocytes That Participate in the Immune Response to Diverse Microbes

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Natural Killer T (NKT) cells constitute a conserved T lymphocyte sublineage that has been implicated in the regulation of various immune responses, including the responses to viruses, bacteria, and parasites. NKT cells recognize self and foreign glycolipids presented by CD1d, a non-classical antigen-presenting molecule, and they rapidly produce various cytokines. Many studies have shown that NKT cells have protective roles following microbial infection through the amplification of innate and adaptive immunity, although NKT cells have detrimental roles in some cases. Recent studies have shed light on the natural antigens recognized by NKT cells and the mechanisms whereby they contribute to host defense, and they suggest that these unique T cells have evolved to jump start the immune response to microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kronenberg M, Gapin L: The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557–568, 2002

    PubMed  CAS  Google Scholar 

  2. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H: The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513, 2003

    Article  PubMed  CAS  Google Scholar 

  3. Brigl M, Brenner MB: CD1: Antigen presentation and T cell function. Annu Rev Immunol 22:817–890, 2004

    Article  PubMed  CAS  Google Scholar 

  4. Godfrey DI, Kronenberg M: Going both ways: Immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388, 2004

    Article  PubMed  CAS  Google Scholar 

  5. Kronenberg, M: Towards an understanding of NKT cell biology: Progress and paradoxes. Annu Rev Immunol 23:877–900, 2005

    Article  PubMed  CAS  Google Scholar 

  6. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L: NKT cells: What's in a name? Nat Rev Immunol 4:231–237, 2004

    Article  PubMed  CAS  Google Scholar 

  7. Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, Hansson GK, Berne GP: CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 199:417–422, 2004

    Article  PubMed  CAS  Google Scholar 

  8. Schaible UE, Kaufmann SH: CD1 molecules and CD1-dependent T cells in bacterial infections: A link from innate to acquired immunity? Semin Immunol 12:527–535, 2000

    Article  PubMed  CAS  Google Scholar 

  9. Skold M, Behar SM: Role of CD1d-restricted NKT cells in microbial immunity. Infect Immun 71:5447–5455, 2003

    Article  PubMed  CAS  Google Scholar 

  10. Skold M, Behar SM: The role of group 1 and group 2 CD1-restricted T cells in microbial immunity. Microbes Infect 7:544–551, 2005

    Article  PubMed  CAS  Google Scholar 

  11. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M: Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626, 1997

    Article  PubMed  CAS  Google Scholar 

  12. Smiley ST, Kaplan MH, Grusby MJ: Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275:977–979, 1997

    Article  PubMed  CAS  Google Scholar 

  13. Chen YH, Chiu NM, Mandal M, Wang N, Wang CR: Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6:459–467, 1997

    PubMed  CAS  Google Scholar 

  14. Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L: CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6:469–477, 1997

    Article  PubMed  CAS  Google Scholar 

  15. Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D: CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182:993–1004, 1995

    Article  PubMed  CAS  Google Scholar 

  16. Colgan SP, Hershberg RM, Furuta GT, Blumberg RS: Ligation of intestinal epithelial CD1d induces bioactive IL-10: Critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci USA 96:13938–13943, 1999

    Article  PubMed  CAS  Google Scholar 

  17. Ishikawa H, Hisaeda H, Taniguchi M, Nakayama T, Sakai T, Maekawa Y, Nakano Y, Zhang M, Zhang T, Nishitani M, Takashima M, Himeno K: CD4(+) v(alpha)14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int Immunol 12:1267–1274, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Nieuwenhuis EE, Matsumoto T, Exley M, Schleipman RA, Glickman J, Bailey DT, Corazza N, Colgan SP, Onderdonk AB, Blumberg RS: CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 8:588–593, 2002

    Article  PubMed  CAS  Google Scholar 

  19. Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C, Uezu K, Kinjo T, Nakayama T, Taniguchi M, Saito A: Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330, 2003

    Article  PubMed  CAS  Google Scholar 

  20. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M: Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A: In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903, 2000

    PubMed  CAS  Google Scholar 

  22. Ashkar AA, Rosenthal KL: Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 77:10168–10171, 2003

    PubMed  CAS  Google Scholar 

  23. Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG: Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol 170:1430–1434, 2003

    PubMed  CAS  Google Scholar 

  24. Hegde NR, Johnson DC: A seek-and-hide game between Cd1-restricted T cells and herpesviruses. J Clin Invest 115:1146–1149, 2005

    Article  PubMed  CAS  Google Scholar 

  25. Sanchez DJ, Gumperz JE, Ganem D: Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 115:1369–1378, 2005

    Article  PubMed  CAS  Google Scholar 

  26. Moody DB, Besra GS: Glycolipid targets of CD1-mediated T-cell responses. Immunology 104:243–251, 2001

    Article  PubMed  CAS  Google Scholar 

  27. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB: Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189:1973–1980, 1999

    Article  PubMed  CAS  Google Scholar 

  28. Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR: Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci USA 97:4204–4208, 2000

    Article  PubMed  CAS  Google Scholar 

  29. Szalay G, Zugel U, Ladel CH, Kaufmann SH: Participation of group 2 CD1 molecules in the control of murine tuberculosis. Microbes Infect 1:1153–1157, 1999

    Article  PubMed  CAS  Google Scholar 

  30. Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguch M: Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis (Edinb) 82:97–104, 2002

    CAS  Google Scholar 

  31. Ishigami M, Nishimura H, Naiki Y, Yoshioka K, Kawano T, Tanaka Y, Taniguchi M, Kakumu S, Yoshikai Y: The roles of intrahepatic Valpha14(+) NK1.1(+) T cells for liver injury induced by Salmonella infection in mice. Hepatology 29:1799–1808, 1999

    Article  PubMed  CAS  Google Scholar 

  32. Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL: The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immunol 35:2100–2109, 2005

    Article  PubMed  CAS  Google Scholar 

  33. van Dommelen SL, Tabarias HA, Smyth MJ, Degli-Esposti MA: Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J Virol 77:1877–1884, 2003

    PubMed  Google Scholar 

  34. Spence PM, Sriram V, Van Kaer L, Hobbs JA, Brutkiewicz RR: Generation of cellular immunity to lymphocytic choriomeningitis virus is independent of CD1d1 expression. Immunology 104:168–174, 2001

    Article  PubMed  CAS  Google Scholar 

  35. Roberts TJ, Lin Y, Spence PM, Van Kaer L, Brutkiewicz RR: CD1d1-dependent control of the magnitude of an acute antiviral immune response. J Immunol 172:3454–3461, 2004

    PubMed  CAS  Google Scholar 

  36. Emoto Y, Emoto M, Kaufmann SH: Transient control of interleukin-4-producing natural killer T cells in the livers of Listeria monocytogenes-infected mice by interleukin-12. Infect Immun 65:5003–5009, 1997

    PubMed  CAS  Google Scholar 

  37. Szalay G, Ladel CH, Blum C, Brossay L, Kronenberg M, Kaufmann SH: Cutting edge: Anti-CD1 monoclonal antibody treatment reverses the production patterns of TGF-beta 2 and Th1 cytokines and ameliorates listeriosis in mice. J Immunol 162:6955–6958, 1999

    PubMed  CAS  Google Scholar 

  38. Arrunategui-Correa V, Kim HS: The role of CD1d in the immune response against Listeria infection. Cell Immunol 227:109–120, 2004

    Article  PubMed  CAS  Google Scholar 

  39. Ranson T, Bregenholt S, Lehuen A, Gaillot O, Leite-de-Moraes MC, Herbelin A, Berche P, Di Santo JP: Invariant VΑ14+ NKT cells participate in the early response to enteric Listeria monocytogenes infection. J Immunol 175:1137–1144, 2005

    PubMed  CAS  Google Scholar 

  40. Nakano Y, Hisaeda H, Sakai T, Ishikawa H, Zhang M, Maekawa Y, Zhang T, Takashima M, Nishitani M, Good RA, Himeno K: Roles of NKT cells in resistance against infection with Toxoplasma gondii and in expression of heat shock protein 65 in the host macrophages. Microbes Infect 4:1–11, 2002

    PubMed  CAS  Google Scholar 

  41. Smiley ST, Lanthier PA, Couper KN, Szaba FM, Boyson JE, Chen W, Johnson LL: Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice. J Immunol 174:7904–7911, 2005

    PubMed  CAS  Google Scholar 

  42. Ronet C, Darche S, de Moraes ML, Miyake S, Yamamura T, Louis JA, Kasper LH, Buzoni-Gatel D: NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii. J Immunol 175:899–908, 2005

    PubMed  CAS  Google Scholar 

  43. Hansen DS, Siomos MA, Buckingham L, Scalzo AA, Schofield L: Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18:391–402, 2003

    Article  PubMed  CAS  Google Scholar 

  44. Johnson TR, Hong S, Van Kaer L, Koezuka Y, Graham BS: NK T cells contribute to expansion of CD8(+) T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 76:4294–4303, 2002

    PubMed  CAS  Google Scholar 

  45. Kumar H, Belperron A, Barthold SW, Bockenstedt LK: Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 165:4797–4801, 2000

    PubMed  CAS  Google Scholar 

  46. Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A: Minimal contribution of Valpha14 natural killer T cells to Th1 response and host resistance against mycobacterial infection in mice. Microbiol Immunol 46:207–210, 2002

    PubMed  CAS  Google Scholar 

  47. Dieli F, Taniguchi M, Kronenberg M, Sidobre S, Ivanyi J, Fattorini L, Iona E, Orefici G, De Leo G, Russo D, Caccamo N, Sireci G, Di Sano C, Salerno A: An anti-inflammatory role for V alpha 14 NK T cells in Mycobacterium bovis bacillus Calmette-Guerin-infected mice. J Immunol 171:1961–1968, 2003

    PubMed  CAS  Google Scholar 

  48. Mempel M, Ronet C, Suarez F, Gilleron M, Puzo G, Van Kaer L, Lehuen A, Kourilsky P, Gachelin G: Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J Immunol 168:365–371, 2002

    PubMed  CAS  Google Scholar 

  49. Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ: Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73:181–192, 2005

    PubMed  CAS  Google Scholar 

  50. Exley MA, Bigley NJ, Cheng O, Tahir SM, Smiley ST, Carter QL, Stills HF, Grusby MJ, Koezuka Y, Taniguchi M, Balk SP: CD1d-reactive T-cell activation leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol 69:713–718, 2001

    PubMed  CAS  Google Scholar 

  51. Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D: Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583–594, 2002

    Article  PubMed  CAS  Google Scholar 

  52. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A: A thymic precursor to the NK T cell lineage. Science 296:553–555, 2002

    Article  PubMed  CAS  Google Scholar 

  53. Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI: A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J Exp Med 195:835–844, 2002

    Article  PubMed  CAS  Google Scholar 

  54. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM: Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198:1069–1076, 2003

    Article  PubMed  CAS  Google Scholar 

  55. Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M, Locksley RM, Kronenberg M: Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100:8395–8400, 2003

    PubMed  CAS  Google Scholar 

  56. Kinjo Y, Kawakami K: α-Galactosylceramide: NKT cell-based immunotherapy in intractable infectious diseases. In Immunomodulators as Promising Therapeutic Agents Against Infectious Diseases, K Kawakami, DA Stevens (eds). Kerala, Research Signpost, 2004, pp 105–122

    Google Scholar 

  57. Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A: Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J Immunol 167:6525–6532, 2001

    PubMed  CAS  Google Scholar 

  58. Faveeuw C, Angeli V, Fontaine J, Maliszewski C, Capron A, Van Kaer L, Moser M, Capron M, Trottein F: Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol 169:906–912, 2002

    PubMed  CAS  Google Scholar 

  59. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB: Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237, 2003

    Article  PubMed  CAS  Google Scholar 

  60. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C III, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529, 2005

    Article  PubMed  CAS  Google Scholar 

  61. Zhou D, Mattner J, Cantu C III, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A: Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789, 2004

    PubMed  CAS  Google Scholar 

  62. De Libero G, Moran AP, Gober HJ, Rossy E, Shamshiev A, Chelnokova O, Mazorra Z, Vendetti S, Sacchi A, Prendergast MM, Sansano S, Tonevitsky A, Landmann R, Mori L: Bacterial infections promote T cell recognition of self-glycolipids. Immunity 22:763–772, 2005

    Article  PubMed  CAS  Google Scholar 

  63. Kronenberg M, Kinjo Y: Infection, autoimmunity, and glycolipids: T cells detect microbes through self-recognition. Immunity 22:657–659, 2005

    Article  PubMed  CAS  Google Scholar 

  64. Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD: CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225–229, 1999

    Article  PubMed  CAS  Google Scholar 

  65. Molano A, Park SH, Chiu YH, Nosseir S, Bendelac A, Tsuji M: Cutting edge: The IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: Exploring the role of GPIs in NK T cell activation and antimalarial responses. J Immunol 164:5005–5009, 2000

    PubMed  CAS  Google Scholar 

  66. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE: Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 101:10685–10690, 2004

    PubMed  CAS  Google Scholar 

  67. Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF: A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200:895–904, 2004

    Article  PubMed  CAS  Google Scholar 

  68. Kawahara K, Moll H, Knirel YA, Seydel U, Zahringer U: Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur J Biochem 267:1837–1846, 2000

    Article  PubMed  CAS  Google Scholar 

  69. Kawahara K, Kubota M, Sato N, Tsuge K, Seto Y: Occurrence of an alpha-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol Lett 214:289–294, 2002

    Article  PubMed  CAS  Google Scholar 

  70. Neef A, Witzenberger R, Kampfer P: Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23:261–267, 1999

    Article  PubMed  CAS  Google Scholar 

  71. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M: Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525, 2005

    Article  PubMed  CAS  Google Scholar 

  72. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR: Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701, 2005

    Article  PubMed  CAS  Google Scholar 

  73. Duthie MS, Kahn SJ: Treatment with alpha-galactosylceramide before Trypanosoma cruzi infection provides protection or induces failure to thrive. J Immunol 168:5778–5785, 2002

    PubMed  CAS  Google Scholar 

  74. Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A: Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun 69:213–220, 2001

    PubMed  CAS  Google Scholar 

  75. Kawakami K, Kinjo Y, Yara S, Uezu K, Koguchi Y, Tohyama M, Azuma M, Takeda K, Akira S, Saito A: Enhanced gamma interferon production through activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide in interleukin-18-deficient mice with systemic cryptococcosis. Infect Immun 69:6643–6650, 2001

    PubMed  CAS  Google Scholar 

  76. Chackerian A, Alt J, Perera V, Behar SM: Activation of NKT cells protects mice from tuberculosis. Infect Immun 70:6302–6309, 2002

    PubMed  CAS  Google Scholar 

  77. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV: Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192:921–930, 2000

    Article  PubMed  CAS  Google Scholar 

  78. Gonzalez-Aseguinolaza G, de Oliveira C, Tomaska M, Hong S, Bruna-Romero O, Nakayama T, Taniguchi M, Bendelac A, Van Kaer L, Koezuka Y, Tsuji M: Alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci USA 97:8461–8466, 2000

    Article  PubMed  CAS  Google Scholar 

  79. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, Wilson JM, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M: Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195:617–624, 2002

    Article  PubMed  CAS  Google Scholar 

  80. Miyahira Y, Katae M, Takeda K, Yagita H, Okumura K, Kobayashi S, Takeuchi T, Kamiyama T, Fukuchi Y, Aoki T: Activation of natural killer T cells by alpha-galactosylceramide impairs DNA vaccine-induced protective immunity against Trypanosoma cruzi. Infect Immun 71:1234–1241, 2003

    PubMed  CAS  Google Scholar 

  81. Lucas M, Gadola S, Meier U, Young NT, Harcourt G, Karadimitris A, Coumi N, Brown D, Dusheiko G, Cerundolo V, Klenerman P: Frequency and phenotype of circulating Valpha24/Vbeta11 double-positive natural killer T cells during hepatitis C virus infection. J Virol 77:2251–2257, 2003

    Article  PubMed  CAS  Google Scholar 

  82. de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, Panina-Bordignon P, Abrignani S, Casorati G, Dellabona P: Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 173:1417–1425, 2004

    PubMed  Google Scholar 

  83. van der Vliet HJ, Molling JW, von Blomberg BM, Kolgen W, Stam AG, de Gruijl TD, Mulder CJ, Janssen HL, Nishi N, van den Eertwegh AJ, Scheper RJ, van Nieuwkerk CJ: Circulating Valpha24+Vbeta11+ NKT cell numbers and dendritic cell CD1d expression in hepatitis C virus infected patients. Clin Immunol 114:183–189, 2005

    PubMed  Google Scholar 

  84. Levy O, Orange JS, Hibberd P, Steinberg S, LaRussa P, Weinberg A, Wilson SB, Shaulov A, Fleisher G, Geha RS, Bonilla FA, Exley M: Disseminated varicella infection due to the vaccine strain of varicella-zoster virus, in a patient with a novel deficiency in natural killer T cells. J Infect Dis 188:948–953, 2003

    Article  PubMed  Google Scholar 

  85. Gansert JL, Kiessler V, Engele M, Wittke F, Rollinghoff M, Krensky AM, Porcelli SA, Modlin RL, Stenger S: Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol 170:3154–3161, 2003

    PubMed  CAS  Google Scholar 

  86. Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM: A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709, 2002

    PubMed  CAS  Google Scholar 

  87. Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ: Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389, 2004

    Article  PubMed  CAS  Google Scholar 

  88. Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, Fujisawa T: A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917, 2005

    PubMed  CAS  Google Scholar 

  89. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV: Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517, 2005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Kronenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinjo, Y., Kronenberg, M. Vα14i NKT Cells Are Innate Lymphocytes That Participate in the Immune Response to Diverse Microbes. J Clin Immunol 25, 522–533 (2005). https://doi.org/10.1007/s10875-005-8064-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-005-8064-5

Key Words

Navigation