Skip to main content

Advertisement

Log in

Vascular Endothelial Growth Factor (VEGF) in Autoimmune Diseases

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Vascular endothelial growth factor (VEGF) is a potent stimulating factor for angiogenesis and vascular permeability. There are eight isoforms with different and sometimes overlapping functions. The mechanisms of action are under investigation with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins, which were not previously associated to angiogenesis. VEGF has important physiological actions on embryonic development, healing, and menstrual cycle. It also has a great role in pathological conditions that are associated to autoimmune diseases. There is considerable evidence in various autoimmune diseases such as in systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis of an interrelationship between the VEGF system and theses disorders. Serum levels of VEGF correlate with disease activity in a large number of autoimmune diseases and fall with the use of standard therapy. We raised the possible future therapeutic strategies in autoimmune diseases with the anti-VEGF or anti-VEGFR (receptor). So far, this therapy has been used in cancer and macular ocular degeneration in diabetes. This review outlines the evidence for VEGF participation in various autoimmune diseases and proposes lines for future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bates DO, Harper SJ: Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 39:225–237, 2002

    Article  PubMed  CAS  Google Scholar 

  2. Jain RK: Molecular regulation of vessel maturation. Nat Med 9:685–693, 2003

    Article  PubMed  CAS  Google Scholar 

  3. Isner JM et al.: Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348:370–374, 1996

    Article  PubMed  CAS  Google Scholar 

  4. Senger DR et al.: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985, 1983

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N, Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858, 1989

    Article  PubMed  CAS  Google Scholar 

  6. Keck PJ et al.: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312, 1989

    Article  PubMed  CAS  Google Scholar 

  7. Plate KH, Warnke PC: Vascular endothelial growth factor. J Neurooncol 35:365–372, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J, Shing Y: Control of angiogenesis by heparin and other sulfated polysaccharides. Adv Exp Med Biol 313:355–364, 1992

    PubMed  CAS  Google Scholar 

  9. Distler JH et al.: Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47:149–161, 2003

    PubMed  CAS  Google Scholar 

  10. Robak E et al.: Serum levels of angiogenic cytokines in systemic lupus erythematosus and their correlation with disease activity. Eur Cytokine Netw 12:445–452, 2001

    PubMed  CAS  Google Scholar 

  11. Navarro C et al.: Vascular endothelial growth factor plasma levels in patients with systemic lupus erythematosus and primary antiphospholipid syndrome. Lupus 11:21–24, 2002

    Article  PubMed  CAS  Google Scholar 

  12. Robak E, Sysa-Jedrzejewska A, Robak T: Vascular endothelial growth factor and its soluble receptors VEGFR-1 and VEGFR-2 in the serum of patients with systemic lupus erythematosus. Mediators Inflamm 12:293–298, 2003

    Article  PubMed  CAS  Google Scholar 

  13. Nishitani Y et al.: Imbalance between interleukin-6 and adreno- medullin mRNA levels in peripheral blood mononuclear cells of patients with lupus nephritis. Clin Exp Immunol 124:330–336, 2001

    Article  PubMed  CAS  Google Scholar 

  14. Avihingsanon Y et al.: Measurement of urinary chemokine and growth factor messenger RNAs: A noninvasive monitoring in lupus nephritis. Kidney Int 69:747–753, 2006

    Article  PubMed  CAS  Google Scholar 

  15. Watanabe H et al.: Anti-vascular endothelial growth factor receptor-2 antibody accelerates renal disease in the NZB/W F1 murine systemic lupus erythematosus model. Clin Cancer Res 11:407–409, 2005

    PubMed  CAS  Google Scholar 

  16. Taylor PC: Serum vascular markers and vascular imaging in assessment of rheumatoid arthritis disease activity and response to therapy. Rheumatology (Oxford) 44:721–728, 2005

    Article  CAS  Google Scholar 

  17. Walsh DA et al.: Focally regulated endothelial proliferation and cell death in human synovium. Am J Pathol 152:691–702, 1998

    PubMed  CAS  Google Scholar 

  18. Paleolog EM: Angiogenesis in rheumatoid arthritis. Arthritis Res 4(Suppl 3):S81–S90, 2002

    Article  Google Scholar 

  19. Ikeda M et al.: Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 191:426–433, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Lee SS et al.: Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 19:321–324, 2001

    PubMed  CAS  Google Scholar 

  21. Harada M et al.: Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 27:377–380, 1998

    Article  PubMed  CAS  Google Scholar 

  22. Sone H et al.: Elevated levels of vascular endothelial growth factor in the sera of patients with rheumatoid arthritis correlation with disease activity. Life Sci 69:1861–1869, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Maeno N et al.: Increased circulating vascular endothelial growth factor is correlated with disease activity in polyarticular juvenile rheumatoid arthritis. J Rheumatol 26:2244–2248, 1999

    PubMed  CAS  Google Scholar 

  24. Ballara S et al.: Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 44:2055–2064, 2001

    Article  PubMed  CAS  Google Scholar 

  25. Lainer DT, Brahn E: New antiangiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs 14:1–17, 2005

    Article  PubMed  CAS  Google Scholar 

  26. Miotla J et al.: Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest 80:1195–1205, 2000

    PubMed  CAS  Google Scholar 

  27. Paleolog E: Target effector role of vascular endothelium in the inflammatory response: Insights from the clinical trial of anti-TNF alpha antibody in rheumatoid arthritis. Mol Pathol 50:225–233, 1997

    PubMed  CAS  Google Scholar 

  28. Strunk J, Bundke E, Lange U: Anti-TNF-alpha antibody Infliximab and glucocorticoids reduce serum vascular endothelial growth factor levels in patients with rheumatoid arthritis: A pilot study. Rheumatol Int 26:252–256, 2006

    Article  PubMed  CAS  Google Scholar 

  29. Kahaleh MB: The role of vascular endothelium in the pathogenesis of connective tissue disease: Endothelial injury, activation, participation and response. Clin Exp Rheumatol 8:595–601, 1990

    PubMed  CAS  Google Scholar 

  30. Trompezinski S et al.: Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br J Dermatol 143:539–545, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Mackiewicz Z et al.: Increased but imbalanced expression of VEGF and its receptors has no positive effect on angiogenesis in systemic sclerosis skin. Clin Exp Rheumatol 20:641–646, 2002

    PubMed  CAS  Google Scholar 

  32. Kikuchi K et al.: Serum concentrations of vascular endothelial growth factor in collagen diseases. Br J Dermatol 139:1049–1051, 1998

    Article  PubMed  CAS  Google Scholar 

  33. Choi JJ et al.: Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol 30:1529–1533, 2003

    PubMed  CAS  Google Scholar 

  34. Viac J, Schmitt D, Claudy A: Plasma vascular endothelial growth factor levels in scleroderma are not correlated with disease activity. Acta Derm Venereol 80:383, 2000

    PubMed  CAS  Google Scholar 

  35. Distler O et al.: Angiogenic and angiostatic factors in systemic sclerosis: Increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res 4:R11, 2002

    Article  PubMed  Google Scholar 

  36. Distler O et al.: Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 95:109–116, 2004

    Article  PubMed  CAS  Google Scholar 

  37. Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S: Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: Relationship to organ systemic involvement. Clin Rheumatol 24:111–116, 2005

    Article  PubMed  Google Scholar 

  38. Dziankowska-Bartkowiak B et al.: Decreased ratio of circulatory vascular endothelial growth factor to endostatin in patients with systemic sclerosis–association with pulmonary involvement. Clin Exp Rheumatol 24:508–513, 2006

    PubMed  CAS  Google Scholar 

  39. Allanore Y et al.: Lack of association between 3 vascular endothelial growth factor gene polymorphisms and systemic sclerosis: Results from a multicenter EUSTAR study of European Caucasian patients. Ann Rheum Dis 66:257–259, 2007

    Google Scholar 

  40. Allanore Y et al.: Nifedipine decreases sVCAM-1 concentrations and oxidative stress in systemic sclerosis but does not affect the concentrations of vascular endothelial growth factor or its soluble receptor 1. Arthritis Res Ther 6:R309–R314, 2004

    Article  PubMed  CAS  Google Scholar 

  41. Distler JH et al.: Bucillamine induces the synthesis of vascular endothelial growth factor dose-dependently in systemic sclerosis fibroblasts via nuclear factor-kappaB and simian virus 40 promoter factor 1 pathways. Mol Pharmacol 65:389–399, 2004

    Article  PubMed  CAS  Google Scholar 

  42. Matsui N et al.: Dermatomyositis with peripheral nervous system involvement: activation of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) in vasculitic lesions. Intern Med 42:1233–1239, 2003

    PubMed  Google Scholar 

  43. Ohno A et al.: Dermatomyositis associated with Sjogren’s syndrome: VEGF involvement in vasculitis. Clin Neuropathol 23:178–182, 2004

    PubMed  CAS  Google Scholar 

  44. Williams FM et al.: Systemic endothelial cell markers in primary antiphospholipid syndrome. Thromb Haemost 84:742–746, 2000

    PubMed  CAS  Google Scholar 

  45. Cuadrado MJ et al.: Vascular endothelial growth factor expression in monocytes from patients with primary antiphospholipid syndrome. J Thromb Haemost 4:2461–2469, 2006

    Article  PubMed  CAS  Google Scholar 

  46. Arima K et al.: RS3PE syndrome presenting as vascular endothelial growth factor associated disorder. Ann Rheum Dis 64:1653–1655, 2005

    Article  PubMed  CAS  Google Scholar 

  47. Rajamannan NM et al.: Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation 111:3296–3301, 2005

    Article  PubMed  CAS  Google Scholar 

  48. Kikuchi K et al.: Angiogenic cytokines in serum and cutaneous lesions of patients with polyarteritis nodosa. J Am Acad Dermatol 53:57–61, 2005

    Article  PubMed  Google Scholar 

  49. Mitsuyama H et al.: Increased serum vascular endothelial growth factor level in Churg–Strauss syndrome. Chest 129:407–411, 2006

    Article  PubMed  CAS  Google Scholar 

  50. Li CG et al.: Serum levels of vascular endothelial growth factor (VEGF) are markedly elevated in patients with Wegener’s granulomatosis. Br J Rheumatol 37:1303–1306, 1998

    Article  PubMed  CAS  Google Scholar 

  51. Erdem F et al.: Vascular endothelial and basic fibroblast growth factor serum levels in patients with Behcet’s disease. Rheumatol Int 25:599–603, 2005

    Article  PubMed  CAS  Google Scholar 

  52. Cekmen M et al.: Vascular endothelial growth factor levels are increased and associated with disease activity in patients with Behcet’s syndrome. Int J Dermatol 42:870–875, 2003

    Article  PubMed  CAS  Google Scholar 

  53. Salvarani C et al.: Vascular endothelial growth factor gene polymorphisms in Behcet’s disease. J Rheumatol 31:1785–1789, 2004

    PubMed  CAS  Google Scholar 

  54. Ohno T et al.: Serum vascular endothelial growth factor: A new predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr 159:424–429, 2000

    Article  PubMed  CAS  Google Scholar 

  55. Yasukawa K et al.: Systemic production of vascular endothelial growth factor and fms-like tyrosine kinase-1 receptor in acute Kawasaki disease. Circulation 105:766–769, 2002

    Article  PubMed  CAS  Google Scholar 

  56. Rueda B et al.: A functional variant of vascular endothelial growth factor is associated with severe ischemic complications in giant cell arteritis. J Rheumatol 32:1737–1741, 2005

    PubMed  CAS  Google Scholar 

  57. Kidd BL et al.: Immunohistological features of synovitis in ankylosing spondylitis: A comparison with rheumatoid arthritis. Ann Rheum Dis 48:92–98, 1989

    PubMed  CAS  Google Scholar 

  58. Drouart M et al.: High serum vascular endothelial growth factor correlates with disease activity of spondylarthropathies. Clin Exp Immunol 132:158–162, 2003

    Article  PubMed  CAS  Google Scholar 

  59. Seo JS et al.: Influence of VEGF gene polymorphisms on the severity of ankylosing spondylitis. Rheumatology (Oxford) 44:1299–1302, 2005

    Article  CAS  Google Scholar 

  60. Griga T et al.: Increased serum levels of vascular endothelial growth factor in patients with inflammatory bowel disease. Scand J Gastroenterol 33:504–508, 1998

    Article  PubMed  CAS  Google Scholar 

  61. Kanazawa S et al.: VEGF, basic-FGF, and TGF-beta in Crohn’s disease and ulcerative colitis: A novel mechanism of chronic intestinal inflammation. Am J Gastroenterol 96:822–828, 2001

    PubMed  CAS  Google Scholar 

  62. Kapsoritakis A et al.: Vascular endothelial growth factor in inflammatory bowel disease. Int J Colorectal Dis 18:418–422, 2003

    Article  PubMed  Google Scholar 

  63. Magro F et al.: Soluble selectins, sICAM, sVCAM, and angiogenic proteins in different activity groups of patients with inflammatory bowel disease. Dig Dis Sci 49:1265–1274, 2004

    Article  PubMed  CAS  Google Scholar 

  64. Beddy D et al.: Increased vascular endothelial growth factor production in fibroblasts isolated from strictures in patients with Crohn’s disease. Br J Surg 91:72–77, 2004

    Article  PubMed  CAS  Google Scholar 

  65. Di Sabatino A et al.: Infliximab downregulates basic fibroblast growth factor and vascular endothelial growth factor in Crohn’s disease patients. Aliment Pharmacol Ther 19:1019–1024, 2004

    Article  PubMed  CAS  Google Scholar 

  66. Hiehle JF Jr et al.: Correlation of spectroscopy and magnetization transfer imaging in the evaluation of demyelinating lesions and normal appearing white matter in multiple sclerosis. Magn Reson Med 32:285–293, 1994

    Article  PubMed  Google Scholar 

  67. Su JJ et al.: Upregulation of vascular growth factors in multiple sclerosis: Correlation with MRI findings. J Neurol Sci 243:21–30, 2006

    Article  PubMed  CAS  Google Scholar 

  68. Gay D, Esiri M: Blood–brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain 114(Pt 1B):557–572, 1991

    Article  PubMed  Google Scholar 

  69. Kwon EE, Prineas JW: Blood–brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J Neuropathol Exp Neurol 53:625–636, 1994

    PubMed  CAS  Google Scholar 

  70. Proescholdt MA et al.: Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J Neuropathol Exp Neurol 58:613–627, 1999

    Article  PubMed  CAS  Google Scholar 

  71. Proescholdt MA et al.: Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61:914–925, 2002

    PubMed  CAS  Google Scholar 

  72. Tham E et al.: Decreased expression of VEGF-A in rat experimental autoimmune encephalomyelitis and in cerebrospinal fluid mononuclear cells from patients with multiple sclerosis. Scand J Immunol 64:609–622, 2006

    Article  PubMed  CAS  Google Scholar 

  73. Ameglio F et al.: Bullous pemphigoid and pemphigus vulgaris: Correlated behaviour of serum VEGF, sE-selectin and TNF-alpha levels. J Biol Regul Homeost Agents 11:148–153, 1997

    PubMed  CAS  Google Scholar 

  74. Detmar M et al.: Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180:1141–1146, 1994

    Article  PubMed  CAS  Google Scholar 

  75. Detmar M et al.: Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1–6, 1998

    Article  PubMed  CAS  Google Scholar 

  76. Xia YP et al.: Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 102:161–168, 2003

    Article  PubMed  CAS  Google Scholar 

  77. Young HS et al.: Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. J Invest Dermatol 122:209–215, 2004

    Article  PubMed  CAS  Google Scholar 

  78. Creamer D et al.: Mediation of systemic vascular hyperpermeability in severe psoriasis by circulating vascular endothelial growth factor. Arch Dermatol 138:791–796, 2002

    Article  PubMed  CAS  Google Scholar 

  79. Nielsen HJ et al.: Elevated plasma levels of vascular endothelial growth factor and plasminogen activator inhibitor-1 decrease during improvement of psoriasis. Inflamm Res 51:563–567, 2002

    Article  PubMed  CAS  Google Scholar 

  80. Viglietto G et al.: Upregulation of the angiogenic factors PlGF, VEGF and their receptors (Flt-1, Flk-1/KDR) by TSH in cultured thyrocytes and in the thyroid gland of thiouracil-fed rats suggest a TSH-dependent paracrine mechanism for goiter hypervascularization. Oncogene 15:2687–2698, 1997

    Article  PubMed  CAS  Google Scholar 

  81. Klein M et al.: Vascular endothelial growth factor gene and protein: Strong expression in thyroiditis and thyroid carcinoma. J Endocrinol 161:41–49, 1999

    Article  PubMed  CAS  Google Scholar 

  82. Sato K et al.: Stimulation by thyroid-stimulating hormone and Grave’s immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo. J Clin Invest 96:1295–1302, 1995

    Article  PubMed  CAS  Google Scholar 

  83. Iitaka M et al.: Increased serum vascular endothelial growth factor levels and intrathyroidal vascular area in patients with Graves’ disease and Hashimoto’s thyroiditis. J Clin Endocrinol Metab 83:3908–3912, 1998

    Article  PubMed  CAS  Google Scholar 

  84. Shimizu A et al.: Vascular endothelial growth factor165 resolves glomerular inflammation and accelerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol 15:2655–2665, 2004

    Article  PubMed  CAS  Google Scholar 

  85. Nagashima M et al.: Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 39:1255–1262, 2000

    Article  CAS  Google Scholar 

  86. Nakahara H et al.: Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48:1521–1529, 2003

    Article  PubMed  CAS  Google Scholar 

  87. Carrato A, Gallego-Plazas J, Guillen-Ponce C: Anti-VEGF therapy: A new approach to colorectal cancer therapy. Expert Rev Anticancer Ther 6:1385–1396, 2006

    Article  PubMed  CAS  Google Scholar 

  88. Del Priore LV, Tezel TH, Kaplan HJ: Maculoplasty for age-related macular degeneration: Reengineering Bruch’s membrane and the human macula. Prog Retin Eye Res 25:539–562, 2006

    Article  PubMed  Google Scholar 

  89. Kaiser PK: Antivascular endothelial growth factor agents and their development: Therapeutic implications in ocular diseases. Am J Ophthalmol 142:660–668, 2006

    Article  PubMed  CAS  Google Scholar 

  90. Ng EW et al.: Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132, 2006

    Article  PubMed  CAS  Google Scholar 

  91. De Bandt M et al.: Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J Immunol 171:4853–4859, 2003

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Shoenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, J.F., Blank, M. & Shoenfeld, Y. Vascular Endothelial Growth Factor (VEGF) in Autoimmune Diseases. J Clin Immunol 27, 246–256 (2007). https://doi.org/10.1007/s10875-007-9083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9083-1

KEY WORDS:

Navigation