Skip to main content
Log in

CD72, a Coreceptor with Both Positive and Negative Effects on B Lymphocyte Development and Function

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

B lymphocytes remain in a resting state until activated by antigenic stimuli through interaction with the B cell receptor (BCR). Coreceptors on B cells can modulate the thresholds for signaling through the BCR for growth and differentiation. CD72 is a B cell coreceptor that has been shown to interact with CD100, a semaphorin, and to enhance BCR signaling.

Discussion

CD72 ligation induces a variety of early signaling events such as activation of the Src kinases Blk and Lyn and the non-src kinase Btk leading to activation of the mitogen-activated protein (MAP) kinases, events usually associated with positive signaling. CD72 signals can enable Btk-deficient B cells to overcome their unresponsiveness to BCR signaling. On the other hand, BCR-mediated signals are enhanced in CD72-deficient cells but are reduced in CD100 null cells. The dual effects of CD72 on B cells can be explained by its association with positive and negative signaling molecules. Thus, CD72 interacts with SHP-1, an SH2-domain containing protein tyrosine phosphatase, a negative regulator of signaling, and Grb2, an adaptor protein associated with the Ras/MAPK pathway. Ligation of CD72 also triggered its association with CD19, a positive modulator of B cell receptor signaling. We propose a dual signaling hypothesis to explain the growth and differentiation promoting properties of CD72. Deficiency in either CD72 or CD100 leads to autoimmunity in mouse models. CD72 expression and polymorphisms exhibit some association with autoimmune diseases such as lupus, Sjogren’s syndrome, and type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2002;2:945–56. doi:10.1038/nri955.

    Article  PubMed  CAS  Google Scholar 

  2. Zouali M, Sarmay G. B lymphocyte signaling pathways in systemic autoimmunity: implications for pathogenesis and treatment. Arthritis Rheum 2004;50:2730–41. doi:10.1002/art.20487.

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:881–922. doi:10.1146/annurev.iy.12.040194.004313.

    Article  PubMed  CAS  Google Scholar 

  4. Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 2000;18:393–422. doi:10.1146/annurev.immunol.18.1.393.

    Article  PubMed  CAS  Google Scholar 

  5. Nitschke L, Tsubata T. Molecular interactions regulate BCR signal inhibition by CD22 and CD72. Trends Immunol 2004;25:543–50. doi:10.1016/j.it.2004.08.002.

    Article  PubMed  CAS  Google Scholar 

  6. Cady CT, Rice JS, Ott VL, Cambier JC. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunol Rev 2008;224:44–57. doi:10.1111/j.1600-065X.2008.00663.x.

    Article  PubMed  CAS  Google Scholar 

  7. Wu HJ, Bondada S. Positive and negative roles of CD72 in B cell function. Immunol Res 2002;25:155–66. doi:10.1385/IR:25:2:155.

    Article  PubMed  CAS  Google Scholar 

  8. Parnes JR, Pan C. CD72, a negative regulator of B-cell responsiveness. Immunol Rev 2000;176:75–8. doi:10.1034/j.1600-065X.2000.00608.x.

    Article  PubMed  CAS  Google Scholar 

  9. Kumanogoh A, Shikina T, Watanabe C, Takegahara N, Suzuki K, Yamamoto M, et al. Requirement for CD100–CD72 interactions in fine-tuning of B-cell antigen receptor signaling and homeostatic maintenance of the B-cell compartment. Int Immunol 2005;17:1277–82. doi:10.1093/intimm/dxh307.

    Article  PubMed  CAS  Google Scholar 

  10. Gordon J. B-cell signalling via the C-type lectins CD23 and CD72. Immunol Today 1994;15:411–7. doi:10.1016/0167-5699(94)90270-4.

    Article  PubMed  CAS  Google Scholar 

  11. Subbarao B, Mosier DE. Induction of B lymphocyte proliferation without antibody secretion by monoclonal anti-Lyb2 antibody. J Immunol 1983;130:2033–7.

    PubMed  CAS  Google Scholar 

  12. Yakura H, Shen FW, Bourcet E, Boyse EA. Evidence that Lyb-2 is critical to specific activation of B cells before they become responsive to T and other signals. J Exp Med 1982;155:1309. doi:10.1084/jem.155.5.1309.

    Article  PubMed  CAS  Google Scholar 

  13. von Hoegen I, Hsieh CL, Scharting R, Francke U, Parnes JR. Identity of human Lyb-2 and CD72 and localization of the gene to chromosome 9. Eur J Immunol 1991;21:1425–31. doi:10.1002/eji.1830210615.

    Article  Google Scholar 

  14. Bie Petersen C, Nygard AB, Fredholm M, Aasted B, Salomonsen J. Various domains of the B-cell regulatory molecule CD72 has diverged at different rates in mammals: cloning, transcription and mapping of porcine CD72. Dev Comp Immunol 2007;31:530–8. doi:10.1016/j.dci.2006.07.008.

    Article  PubMed  CAS  Google Scholar 

  15. Beavil AJ, Edmeades RL, Gould HJ, Sutton BJ. Alpha-helical coiled-coil stalks in the low-affinity receptor for IgE (Fc epsilon RII/CD23) and related C-type lectins. Proc Natl Acad Sci USA 1992;89:753–7. doi:10.1073/pnas.89.2.753.

    Article  PubMed  CAS  Google Scholar 

  16. Tung JS, Shen FW, LaRegina V, Boyse EA. Antigenic complexity and protein-structural polymorphism in the Lyb-2 system. Immunogenetics 1986;23:208–10. doi:10.1007/BF00373822.

    Article  PubMed  CAS  Google Scholar 

  17. Robinson WH, Landolfi MMT, Schafer H, Parnes JR. Biochemical identity of the mouse Ly-19.2 and 32.2 alloantigens with the B cell differentiation antigen Lyb-2/CD72. J Immunol 1993;151:4764–72.

    PubMed  CAS  Google Scholar 

  18. Robinson WH, Ying H, Miceli MC, Parnes JR. Extensive polymorphism in the extracellular domain of the mouse B cell differentiation antigen Lyb-2/CD72. J Immunol 1992;149:880–6.

    PubMed  CAS  Google Scholar 

  19. Kumanogoh A, Watanabe C, Lee I, Wang X, Shi W, Araki H, et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100. A novel mechanism for regulating B cell signaling. Immunity 2000;13:621–31. doi:10.1016/S1074-7613(00)00062-5.

    Article  PubMed  CAS  Google Scholar 

  20. Ishida I, Kumanogoh A, Suzuki K, Akahani S, Noda K, Kikutani H. Involvement of CD100, a lymphocyte semaphorin, in the activation of the human immune system via CD72: implications for the regulation of immune and inflammatory responses. Int Immunol 2003;15:1027–34. doi:10.1093/intimm/dxg098.

    Article  PubMed  CAS  Google Scholar 

  21. Kumanogoh A, Kikutani H. Roles of the semaphorin family in immune regulation. Adv Immunol 2003;81:173–98. doi:10.1016/S0065-2776(03)81005-2.

    Article  PubMed  CAS  Google Scholar 

  22. Subbarao B, Mosier DE. Activation of B lymphocytes by monovalent anti-Lyb2 antibodies. J Exp Med 1984;159:1796. doi:10.1084/jem.159.6.1796.

    Article  PubMed  CAS  Google Scholar 

  23. Snow EC, Mond JJ, Subbarao B. Enhancement by monoclonal anti-Lyb2 antibody of antigen specific B lymphocyte expansion stimulated by TNP-Ficoll and T lymphocyte -derived factors. J Immunol 1986;137:1793–6.

    PubMed  CAS  Google Scholar 

  24. Subbarao B, Morris J, Baluyut AR. Properties of anti-Lyb2 mediated B cell activation and the relationship between Lyb2 molecules and receptors for B cell stimulatory factor-1 on murine B lymphocytes. Cell Immunol 1988;112:329. doi:10.1016/0008-8749(88)90302-4.

    Article  PubMed  CAS  Google Scholar 

  25. Polla BS, Ohara J, Paul WE, Nabavi N, Myer A, Liou HC, et al. Differential induction of class II gene expression in murine pre-B-cell lines by B-cell stimulatory factor-1 and by antibodies to B-cell surface antigens. J Mol Cell Immunol 1988;3:363–73.

    PubMed  CAS  Google Scholar 

  26. Kamal M, Katira A, Gordon J. Stimulation of B lymphocytes via CD72 (human Lyb-2). Eur J Immunol 1991;21:1419–24. doi:10.1002/eji.1830210614.

    Article  PubMed  CAS  Google Scholar 

  27. Katira A, Kamal M, Gordon J. Occupancy of CD72 (the CD5 counterstructure) enhances interleukin-4-dependent CD23 expression in resting B lymphocytes. Immunology 1992;76:422–6.

    PubMed  CAS  Google Scholar 

  28. Pan C, Baumgarth N, Parnes JR. CD72-deficient mice reveal nonredundant roles of CD72 in B cell development and activation. Immunity 1999;11:495–506. doi:10.1016/S1074-7613(00)80124-7.

    Article  PubMed  CAS  Google Scholar 

  29. Li DH, Tung JW, Tarner IH, Snow AL, Yukinari T, Ngernmaneepothong R, et al. CD72 down-modulates BCR-induced signal transduction and diminishes survival in primary mature B lymphocytes. J Immunol 2006;176:5321–8.

    PubMed  CAS  Google Scholar 

  30. Shi W, Kumanogoh A, Watanabe C, Uchida J, Wang X, Yasui T, et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system. Defective B and T cell activation in CD100-deficient mice. Immunity 2000;13:633–42. doi:10.1016/S1074-7613(00)00063-7.

    Article  PubMed  CAS  Google Scholar 

  31. Nomura T, Han H, Howard MC, Yagita H, Yakura H, Honjo T, et al. Antigen receptor-mediated B cell death is blocked by signaling via CD72 or treatment with dextran sulfate and is defective in autoimmunity-prone mice. Int Immunol 1996;8:867–75. doi:10.1093/intimm/8.6.867.

    Article  PubMed  CAS  Google Scholar 

  32. Wu Y, Nadler MJ, Brennan LA, Gish GD, Timms JF, Fusaki N, et al. The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1. Curr Biol 1998;8:1009–17. doi:10.1016/S0960-9822(07)00421-6.

    Article  PubMed  CAS  Google Scholar 

  33. Fujiwara N, Fusaki N, Hozumi N. CD72 stimulation modulates anti-IgM induced apoptotic signaling through the pathway of NF-kappaB, c-Myc and p27(Kip1). Microbiol Immunol 2004;48:59–66.

    PubMed  CAS  Google Scholar 

  34. Baba T, Fusaki N, Aoyama A, Li DH, Okamura RM, Parnes JR, et al. Dual regulation of BCR-mediated growth inhibition signaling by CD72. Eur J Immunol 2005;35:1634–42. doi:10.1002/eji.200425775.

    Article  PubMed  CAS  Google Scholar 

  35. Yakura H, Shen FW, Boyse EA. Lyb-2 system of mouse B cells. Evidence for a role in the generation of antibody-forming cells. J Exp Med 1981;153:129–45. doi:10.1084/jem.153.1.129.

    Article  PubMed  CAS  Google Scholar 

  36. Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003;21:205–30. doi:10.1146/annurev.immunol.21.120601.141138.

    Article  PubMed  CAS  Google Scholar 

  37. Ogimoto M, Mizuno K, Tate G, Takahashi H, Katagiri M, Hasegawa K, et al. Regulation of lipopolysaccharide- and IL-4 induced immunoglobulin heavy chain gene activation: differential roles for CD45 and Lyb-2. Int Immunol 1992;4:651–9. doi:10.1093/intimm/4.6.651.

    Article  PubMed  CAS  Google Scholar 

  38. Grupp SA, Harmony JA, Baluyut AR, Subbarao B. Early events in B-cell activation: anti-Lyb2, but not BSF-1, induces a phosphatidylinositol response in murine B cells. Cell Immunol 1987;110:131–9. doi:10.1016/0008-8749(87)90107-9.

    Article  PubMed  CAS  Google Scholar 

  39. Muthusamy N, Baluyut AR, Subbarao B. Differential regulation of surface Ig- and Lyb2-mediated B cell activation by cyclic AMP. I. Evidence for alternative regulation of signaling through two different receptors linked to phosphatidylinositol hydrolysis in murine B cells. J Immunol 1991;147:2483–92.

    PubMed  CAS  Google Scholar 

  40. Wu HJ, Venkataraman C, Estus S, Dong C, Davis RJ, Flavell RA, et al. Positive signaling through CD72 induces mitogen-activated protein kinase activation and synergizes with B cell receptor signals to induce X-linked immunodeficiency B cell proliferation. J Immunol 2001;167:1263–73.

    PubMed  CAS  Google Scholar 

  41. Venkataraman C, Muthusamy N, Muthukkumar S, Bondada S. Activation of lyn, blk and btk but not syk in CD72 stimulated B lymphocytes. J Immunol 1998;160:3322–9.

    PubMed  CAS  Google Scholar 

  42. Justement LB. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 2000;245:1–51.

    PubMed  CAS  Google Scholar 

  43. Muthusamy N, Bondada S. Differential regulation of surface immunoglobulin and Lyb2 mediated B cell activation. II cAMP dependent (prostaglandin E2) and independent (IFN-γ) mechanisms of regulation of B lymphocyte activation. Int Immunol 1993;5:949–56. doi:10.1093/intimm/5.8.949.

    Article  PubMed  CAS  Google Scholar 

  44. Venkataraman C, Lu PJ, Buhl AM, Chen CS, Cambier JC, Bondada S. CD72 mediated B cell activation involves recruitment of CD19 and activation of phosphatidylinositol 3-kinase. Eur J Immunol 1998;28:3003–16. doi:10.1002/(SICI)1521-4141(199810)28:10<3003::AID-IMMU3003>3.0.CO;2-W.

    Article  PubMed  CAS  Google Scholar 

  45. Tedder TF, Inaoki M, Sato S. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 1997;6:107–18. doi:10.1016/S1074-7613(00)80418-5.

    Article  PubMed  CAS  Google Scholar 

  46. Adachi T, Flaswinkel H, Yakura H, Reth M, Tsubata T. The B cell surface protein CD72 recruits the tyrosine phosphatase SHP-1 upon tyrosine phosphorylation. J Immunol 1998;160:4662–5.

    PubMed  CAS  Google Scholar 

  47. Adachi T, Wakabayashi C, Nakayama T, Yakura H, Tsubata T. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol 2000;164:1223–9.

    PubMed  CAS  Google Scholar 

  48. Peterson EJ, Clements JL, Fang N, Koretzky GA. Adaptor proteins in lymphocyte antigen-receptor signaling. Curr Opin Immunol 1998;10:337–44. doi:10.1016/S0952-7915(98)80173-8.

    Article  PubMed  CAS  Google Scholar 

  49. Tari AM, Lopez-Berestein G. GRB2: a pivotal protein in signal transduction. Semin Oncol 2001;28:142–7. doi:10.1016/S0093-7754(01)90291-X.

    Article  PubMed  CAS  Google Scholar 

  50. Fusaki N, Tomita S, Wu Y, Okamoto N, Goitsuka R, Kitamura D, et al. BLNK is associated with the CD72/SHP-1/grb2 complex in the WEHI231 cell line after membrane IgM cross-linking. Eur J Immunol 2000;30:1326–30. doi:10.1002/(SICI)1521-4141(200005)30:5<1326::AID-IMMU1326>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  51. Campbell KS. Signal transduction from the B cell antigen-receptor. Curr Opin Immunol 1999;11:256–64. doi:10.1016/S0952-7915(99)80042-9.

    Article  PubMed  CAS  Google Scholar 

  52. Fujiwara N, Hidano S, Mamada H, Ogasawara K, Kitamura D, Cooper MD, et al. A novel avian homologue of CD72, chB1r, down modulates BCR-mediated activation signals. Int Immunol 2006;18:775–83. doi:10.1093/intimm/dxl014.

    Article  PubMed  CAS  Google Scholar 

  53. Li DH, Winslow MM, Cao TM, Chen AH, Davis CR, Mellins ED, et al. Modulation of peripheral B cell tolerance by CD72 in a murine model. Arthritis Rheum 2008;58:3192–204. doi:10.1002/art.23812.

    Article  PubMed  CAS  Google Scholar 

  54. Wakabayashi C, Adachi T, Wienands J, Tsubata T. A distinct signaling pathway used by the IgG-containing B cell antigen receptor. Science 2002;298:2392–5. doi:10.1126/science.1076963.

    Article  PubMed  CAS  Google Scholar 

  55. Yamashita Y, Phee H, Tudor KSRS, Rossi MID, Parnes JR, Coggeshall KM, et al. A unique CD72 epitope suggests a potential interaction with FcRgammaII/CD32 on B lineage lymphocytes. Hybridoma (Larchmt) 2006;25:107–14. doi:10.1089/hyb.2006.25.107.

    Article  CAS  Google Scholar 

  56. O'Keefe TL, Williams GT, Davies SL, Neuberger MS. Hyperresponsive B cells in CD22-deficient mice. Science 1996;274:798–801. doi:10.1126/science.274.5288.798.

    Article  PubMed  Google Scholar 

  57. Chaouchi N, Vazquez A, Galanaud P, Leprince C. B cell antigen receptor-mediated apoptosis. Importance of accessory molecules CD19 and CD22, and of surface IgM cross-linking. J Immunol 1995;154:3096–104.

    PubMed  CAS  Google Scholar 

  58. Tuscano JM, Riva A, Toscano SN, Tedder TF, Kehrl JH. CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 1999;94:1382–92.

    PubMed  CAS  Google Scholar 

  59. Solvason N, Wu WW, Kabra N, Lund-Johansen F, Roncarolo MG, Behrens TW, et al. Transgene expression of bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells. J Exp Med 1998;187:1081–91. doi:10.1084/jem.187.7.1081.

    Article  PubMed  CAS  Google Scholar 

  60. Cancro MP, Kearney JF. B cell positive selection: road map to the primary repertoire? J Immunol 2004;173:15–9.

    PubMed  CAS  Google Scholar 

  61. Lund FE, Yu N, Kim KM, Reth M, Howard MC. Signaling through CD38 augments B cell antigen receptor (BCR) responses and is dependent on BCR expression. J Immunol 1996;157:1455–67.

    PubMed  CAS  Google Scholar 

  62. Ogimoto M, Ichinowatari G, Watanabe N, Tada N, Mizuno K, Yakura H. Impairment of B cell receptor-mediated Ca2+ influx, activation of mitogen-activated protein kinases and growth inhibition in CD72-deficient BAL-17 cells. Int Immunol 2004;16:971–82. doi:10.1093/intimm/dxh100.

    Article  PubMed  CAS  Google Scholar 

  63. Qu WM, Miyazaki T, Terada M, Lu LM, Nishihara M, Yamada A, et al. Genetic dissection of vasculitis in MRL/lpr lupus mice: a novel susceptibility locus involving the CD72c allele. Eur J Immunol 2000;30:2027–37. doi:10.1002/1521-4141(200007)30:7<2027::AID-IMMU2027>3.0.CO;2-S.

    Article  PubMed  CAS  Google Scholar 

  64. Ying H, Nakayama E, Robinson WH, Parnes JR. Structure of the mouse CD72 (Lyb-2) gene and its alternatively spliced transcripts. J Immunol 1995;155:1637.

    PubMed  CAS  Google Scholar 

  65. Rojas A, Xu F, Rojas M, Thomas JW. Structure and function of CD72 in the non-obese diabetic (NOD) mouse. Autoimmunity 2003;36:233–9. doi:10.1080/0891693031000141059.

    Article  PubMed  CAS  Google Scholar 

  66. Wu J, Marler J, Lenchik NI, Gerling IC. Strain differences in allele and expression levels of CD72 on B-lymphocytes from NOD, AKR, NON and C57BL/6 mice. Immunol Lett 2006;103:115–20. doi:10.1016/j.imlet.2005.10.013.

    Article  PubMed  CAS  Google Scholar 

  67. Hitomi Y, Tsuchiya N, Kawasaki A, Kyogoku C, Ohashi J, Suzuki T. CD72 polymorphisms associated with alternative splicing modify susceptibility to human systemic lupus erythematosus through epistatic interaction with FCGR2B. Hum Mol Genet 2004;13:2907–17.

    Article  PubMed  CAS  Google Scholar 

  68. Nakano S, Morimoto S, Suzuki J, Mitsuo A, Nakiri Y, Katagiri A, et al. Down-regulation of CD72 and increased surface IgG on B cells in patients with lupus nephritis. Autoimmunity 2007;40:9–15. doi:10.1080/08916930601118890.

    Article  PubMed  CAS  Google Scholar 

  69. Xu J, Lu S, Tao J, Zhou Z, Chen Z, Huang Y, et al. CD72 polymorphism associated with child-onset of idiopathic thrombocytopenic purpura in Chinese patients. J Clin Immunol 2008;28:214–9. doi:10.1007/s10875-007-9158-z.

    Article  PubMed  CAS  Google Scholar 

  70. Kaneko U, Toyabe S, Hara M, Uchiyama M. Increased mutations of CD72 transcript in B-lymphocytes from adolescent patients with systemic lupus erythematosus. Pediatr Allergy Immunol 2006;17:565–71. doi:10.1111/j.1399-3038.2006.00466.x.

    Article  PubMed  Google Scholar 

  71. Smith AJF, Gordon TP, Macardle PJ. Increased expression of the B-cell-regulatory molecule CD72 in primary Sjogren's syndrome. Tissue Antigens 2004;63:255–9. doi:10.1111/j.1399-0039.2004.00187.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by NIH grants AI21490, AG05731, and CA92372 and funds from the Markey Cancer Center to SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbarao Bondada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HJ., Bondada, S. CD72, a Coreceptor with Both Positive and Negative Effects on B Lymphocyte Development and Function. J Clin Immunol 29, 12–21 (2009). https://doi.org/10.1007/s10875-008-9264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9264-6

Keywords

Navigation