Skip to main content

Advertisement

Log in

Viscoelastic Imaging of Breast Tumor Microenvironment With Ultrasound

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Imaging systems are most effective for detection and classification when they exploit contrast mechanisms specific to particular disease processes. A common example is mammography, where the contrast depends on local changes in cell density and the presence of microcalcifications. Unfortunately the specificity for classifying malignant breast disease is relatively low for many current diagnostic techniques. This paper describes a new ultrasonic technique for imaging the viscoelastic properties of breast tissue. The mechanical properties of glandular breast tissue, like most biopolymers, react to mechanical stimuli in a manner specific to the microenvironment of the tissue. Elastic properties allow noninvasive imaging of desmoplasia while viscous properties describe metabolism-dependent features such as pH. These ultrasonic methods are providing new tools for studying disease mechanisms as well as improving diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 2001;264:169–84.

    Google Scholar 

  2. Buchbinder SS, Leichter IS, Lederman RB, Novak B, Bamberger PN, Sklair-Levy M, Yarmish G, Fields SI. Computer-aided classification of BI-RADS category 34 breast lesions. Radiology 2004;230(3):820–3.

    Google Scholar 

  3. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–57.

    Google Scholar 

  4. Kim JB, Stein R, O’Hare MJ. Three-dimensional in vitro tissue culture models of breast cancer—A review. Breast Cancer Res Treat 2004;85:281–91.

    Google Scholar 

  5. Dayton P, Pearson D, Clark J, Simon S, Schumann P, Zutshi R, Matsunaga T, Ferrara K. Ultrasonic detection of alpha Vbeta3 expressing-cells with targeted contrast agents. Molec Imag 2004;3(2):125–34.

    Google Scholar 

  6. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–6.

    Google Scholar 

  7. Winnard P Jr, Raman V. Real time non-invasive imaging of receptor-ligand interactions in vivo. J Cell Biochem 2003;90(3):454–63.

    Google Scholar 

  8. Sullivan DC. Challenges and opportunities for in vivo imaging in oncology. Technol Cancer Res Treat 2002;1(6):419–22.

    Google Scholar 

  9. Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Maglione JE, Cardiff RD, Cherry SR. In vivo PET imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA 2004;101:11438–43.

    Google Scholar 

  10. Sarvazyan AP, Skovoroda AR, Emelianov SY, et al. Biophysical bases of elasticity imaging. In: Jones JP editor. Acoustical Imaging. Vol 21. New York: Plenum Press; 1995; p. 223–40.

    Google Scholar 

  11. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall TJ. Elastic moduli of breast and prostate tissues under compression. Ultrason Imag 1998;20:260–74.

    Google Scholar 

  12. Dvorak HF. Tumors: Wounds that do not heal. Similarities between tumor stromal generation and wound healing. N Engl J Med 1986;315:1650–9.

    Google Scholar 

  13. Schürch W, Seemayer TA, Gabbiani G. The myofibroblast: A quarter century after its discovery. Am J Surg Pathol 1998;22:141–7.

    Google Scholar 

  14. Lorenzen J, Sinkus R, Lorenzen M, Dargatz M, Leussler C, Roschmann P, Adam G. MR elastography of the breast: preliminary clinical results. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002;174:830–4.

    Google Scholar 

  15. Tristam M, Barbosa DC, Cosgrove DO, Nassiri DK, Bamber JC, Hill CR. Ultrasonic study of in vivo kinetic characteristics of human tissue. Ultrasound Med Biol 1986;12:927–37.

    Google Scholar 

  16. O’Donnell M, Skovoroda AR, Shapo BM, Emelianov SY. Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelec Freq Control 1994;{41:}314–25.

    Google Scholar 

  17. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995;269:1854–7.

    Google Scholar 

  18. Chaturvedi P, Insana MF, Hall TJ. Testing the limitations of 2-D local companding in strain imaging using phantoms. IEEE Trans Ultrason Ferroelec Freq Control 1998;45:1022–31.

    Google Scholar 

  19. Fatemi M, Greenleaf JF. Ultrasound-stimulated vibro-acoustic spectrography. Science 1998;280:82–5.

    Google Scholar 

  20. Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High-resolution tensor MR elastography for breast tumour detection. Phys Med Biol 2000;45(6):1649–64.

    Google Scholar 

  21. Plewes DB, Bishop J, Samani A, Sciarretta J. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol 2000;45(6):1591–1610.

    Google Scholar 

  22. Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002;28:227–35.

    Google Scholar 

  23. Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002;49(4):426–35.

    Google Scholar 

  24. Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. In: Yarmush M. editor. Annual review of biomedical engineering. Vol. 5. Palo Alto (CA); Annu Rev 2003, p. 57–78.

    Google Scholar 

  25. Zhu Y, Hall TJ. A modified block matching method for real-time freehand strain imaging. Ultrason Imag 2002;24:161–76.

    Google Scholar 

  26. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imag 1991;13:111–34.

    Google Scholar 

  27. Plewes DB, Bishop J, Samani A, Sciarretta J. Visualization and quantification of breast cancer biomechanical properties with MR elastography. Phys Med Biol 2000;45:1591–610.

    Google Scholar 

  28. Fatemi M, Greenleaf JF. Ultrasound-stimulated vibro-acoustic spectrography. Science 1998;280:82–5.

    Google Scholar 

  29. Yeung F, Levinson SF, Fu D, Parker KJ. Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh. IEEE Trans Med Imag 1998;17:945–56.

    Google Scholar 

  30. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995;269(5232):1854–7.

    Google Scholar 

  31. McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL. MR elastography of breast cancer: Preliminary results. Am J Roentgenol 2002;178:1411–7.

    Google Scholar 

  32. Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High resolution tensor MR elastography for breast tumor detection. Phys Med Biol 2000;45(6):1649–64.

    Google Scholar 

  33. Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, Pennanen MF. Elastography of breast lesions: initial clinical results. Radiology 1997;202:79–86.

    Google Scholar 

  34. Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound Med Biol 2003;29(3):427–35.

    Google Scholar 

  35. Hiltawsky KM, Kruger M, Starke C, Heuser L, Ermert H, Jensen A. Freehand ultrasound elastography of breast lesions: Clinical results. Ultrasound Med Biol 2001;27:1461–9.

    Google Scholar 

  36. Lorenzen J, Sinkus R, Lorenzen M, Dargatz M, Leussler C, Roschmann P, Adam G. MR elastography of the breast: Preliminary clinical results. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002;174:830–4.

    Google Scholar 

  37. Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002;28:227–35.

    Google Scholar 

  38. Bercoff J, Chaffai S, Tanter M, Sandrin L, Catheline S, Fink M, Gennisson JL, Meunier M. In vivo breast tumor detection using transient elastography. Ultrasound Med Bio 2003;29(10):1387–96.

    Google Scholar 

  39. Pauly H, Schwan HP. Mechanisms of absorption of ultrasound in liver tissue. J Acoust Soc Am 1971;50:692–9.

    Google Scholar 

  40. Fields S, Dunn F. Correlation of echographic visualizability of tissue with biological composition and physiological state. J Acoust Soc Am 1976;60:1409–12.

    Google Scholar 

  41. Oelze ML, O’Brien WD Jr, Blue JP, Zachary JF. Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging. IEEE Trans Med Imaging 2004;23:764–71.

    Google Scholar 

  42. Sarvazyan A. Elastic properties of soft tissues. In: Levy, Bass, Stern, editors. Handbook of elastic properties of solids, liquids, and gases. Vol 3. New York (NY): Academic Press; 2001. p. 107–27.

  43. Madsen EL, Sathoff HJ, Zagzebski JA. Ultrasonic shear wave properties of soft tissues and tissuelike materials. J Acoust Soc Am 1983;74:1346–55.

    Google Scholar 

  44. Tschoegl NW. Phenomenological theory of linear viscoelastic behavior. New York (NY): Springer; 1989.

    Google Scholar 

  45. Pellot-Barakat C, Frouin F, Insana MF, Herment A. Ultrasound elastography based on multi-scale estimations of displacement regularized fields. IEEE Trans Med Imag 2004;23:153–63.

    Google Scholar 

  46. Liu J, Abbey CK, Insana MF. Linear approach to axial resolution in elasticity imaging. IEEE Trans Ultrason Ferro Freq Control 2004;51:716–25.

    Google Scholar 

  47. Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound Med Biol 2003;29(3):427–35.

    Google Scholar 

  48. Pollack GH. Cells, gells, and the engines of life. Seattle (WA): Ebner & Sons; 2001.

    Google Scholar 

  49. Hall TJ, Bilgen M, Insana MF, Krouskop TA. Phantom materials for elastography. IEEE Trans Ultrason Ferro Freq Control 1997;44:1355–65.

    Google Scholar 

  50. Madsen EL, Frank GR, Krouskop TA, Varghese T, Kallel F, Ophir J. Tissue-mimicking oil-in-gelatin emulsions for use in heterogeneous elastography phantoms. Ultrason Imag 2003;25:17–38.

    Google Scholar 

  51. Ferry JD. Protein gels. Adv Protein Chem 1948;4:1–78.

    Google Scholar 

  52. Ward AG, Courts A. The Science and Technology of Gelatin. New York: Academic Press; 1977.

    Google Scholar 

  53. Granick S. Motions and relaxations of confined liquids. Science 1991;253:1374–9.

    Google Scholar 

  54. Hoffman AS. Conventional and environmentally sensitive hydrogels for medical and industrial use: A review paper. Polym Gels 1991;268:82–7.

    Google Scholar 

  55. Sridhar M, Du H, Pellot-Barakat C, Simon SI, Insana MF. Ultrasonic mechanical relaxation imaging of pH in biopolymers. Proc SPIE 2004;5373:202–11.

    Google Scholar 

  56. Bussink J, Kaanders JHAM, van der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 2003;67:3–15.

    Google Scholar 

  57. Gilles RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Res Imag 2002;16:430–50.

    Google Scholar 

  58. Schornack PA, Gillies RJ. Contributions of cell metabolism and H($+$) diffusion to the acidic pH of tumors. Neoplasia 2003;5:135–45.

    Google Scholar 

  59. Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000;76:589–605.

    Google Scholar 

  60. Yuan J, Narayanan L, Rockwell S, et al. Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 2000;60:4372–6.

    Google Scholar 

  61. Chapman JD, Englehardt EL, Stobbe CC, et al. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol 1998;46:229–37.

    Google Scholar 

  62. Haveman J. The influence of pH on the survival after X-radiation of cultured malignant cells. Effects of carbonylbyanide 3-chlorophenylhydrozone. Int J Radiat Biol 1980;37:201–5.

    Google Scholar 

  63. Song CW, Lyons JC, Griffin RJ, et al. Increase in thermosensitivity of tumor cells by lowering intracellular pH. Cancer Res 1993;53:1599–601.

    Google Scholar 

  64. Du H, Liu J, Pellot-Barakat C, Insana MF. Optimizing multicompression approaches to strain imaging. IEEE Trans Ultrason Ferro Freq Control (in press).

  65. Sridhar M, Du H, Pellot-Barakat C, Tsou JK, Insana MF. Ultrasonic imaging of biochemical changes in tissues. Proc IEEE Ultrason Symp August 2004 (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Insana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insana, M.F., Pellot-Barakat, C., Sridhar, M. et al. Viscoelastic Imaging of Breast Tumor Microenvironment With Ultrasound. J Mammary Gland Biol Neoplasia 9, 393–404 (2004). https://doi.org/10.1007/s10911-004-1409-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-004-1409-5

Keywords

Navigation