Skip to main content

Advertisement

Log in

Do Myoepithelial Cells Hold the Key for Breast Tumor Progression?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary myoepithelial cells have been a neglected facet of breast cancer biology, largely ignored since they have been considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge of stem cell biology and the cellular microenvironment has been increasing, myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis whether myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and that myoepithelial cells are part of the mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for regulation of cell cycle progression, establishing epithelial cell polarity, and inhibiting cell migration and invasion. Based on these functions, normal mammary myoepithelial cells have been called “natural tumor suppressors.” However, during tumor progression myoepithelial cells seem to loose these properties, and eventually this cell population diminishes as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SAGE:

serial analysis of gene expression

DCIS:

ductal carcinoma in situ

LOH:

loss of heterozygosity

SMA:

smooth muscle actin

MSDK:

methylation specific digital karyotyping

CGH:

comprehensive genomic hybridization

SNP:

single nucleotide polymorphism

References

  1. Nevins JR, Huang ES, Dressman H, Pittman J, Huang AT, West M. Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet 2003;12(Spec No 2):R153–7.

    Article  PubMed  CAS  Google Scholar 

  2. Shekhar MP, Pauley R, Heppner G. Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res 2003;5:130–5.

    Article  PubMed  CAS  Google Scholar 

  3. Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 2003;107:688–95.

    Article  PubMed  CAS  Google Scholar 

  4. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 2002;70:537–46.

    Article  PubMed  Google Scholar 

  5. Radisky D, Hagios C, Bissell MJ. Tumors are unique organs defined by abnormal signaling and context. Semin Cancer Biol 2001;11:87–95.

    Article  PubMed  CAS  Google Scholar 

  6. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860–7.

    Article  PubMed  CAS  Google Scholar 

  7. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science 2002;296:1046–9.

    Article  PubMed  CAS  Google Scholar 

  8. Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol 2001;11:97–104.

    Article  PubMed  CAS  Google Scholar 

  9. Tlsty TD, Hein PW. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 2001;11:54–9.

    Article  PubMed  CAS  Google Scholar 

  10. DeCosse JJ, Gossens CL, Kuzma JF, Unsworth BR. Breast cancer: induction of differentiation by embryonic tissue. Science 1973;181:1057–8.

    PubMed  CAS  Google Scholar 

  11. DeCosse JJ, Gossens C, Kuzma JF, Unsworth BR. Embryonic inductive tissues that cause histologic differentiation of murine mammary carcinoma in vitro. J Natl Cancer Inst 1975;54:913–22.

    PubMed  CAS  Google Scholar 

  12. Rohan RM, Fernandez A, Udagawa T, Yuan J, DAmato RJ. Genetic heterogeneity of angiogenesis in mice. Faseb J 2000;14:871–6.

    PubMed  CAS  Google Scholar 

  13. Hunter KW. Host genetics and tumour metastasis. Br J Cancer 2004;90:752–5.

    Article  PubMed  CAS  Google Scholar 

  14. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004;303:848–51.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, et al. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 2005;24(32):5053–68.

    Article  PubMed  CAS  Google Scholar 

  16. Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci. 2004;117:1495–502.

    Article  PubMed  CAS  Google Scholar 

  17. Medina D, Kittrell F. Stroma is not a major target in DMBA-mediated tumorigenesis of mouse mammary preneoplasia. J Cell Sci 2005;118(Pt 1):123–7.

    Article  PubMed  CAS  Google Scholar 

  18. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 2002;115(Pt 1):39–50.

    PubMed  CAS  Google Scholar 

  19. Sternlicht MD, Barsky SH. The myoepithelial defense: a host defense against cancer. Med Hypotheses 1997;48:37–46.

    Article  PubMed  CAS  Google Scholar 

  20. Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH. The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 1997;3:1949–58.

    PubMed  CAS  Google Scholar 

  21. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA. The importance of being a myoepithelial cell. Breast Cancer Res 2002;4:224–30.

    Article  PubMed  CAS  Google Scholar 

  22. Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 2001;264:169–84.

    Article  PubMed  CAS  Google Scholar 

  23. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 2003;3:695–701.

    Article  PubMed  CAS  Google Scholar 

  24. Lakhani SR, OHare MJ. The mammary myoepithelial cell—Cinderella or ugly sister? Breast Cancer Res 2001;3:1–4.

    Article  PubMed  CAS  Google Scholar 

  25. Barbareschi M, Pecciarini L, Cangi MG, Macri E, Rizzo A, Viale G, et al. p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol 2001;25:1054–60.

    Article  PubMed  CAS  Google Scholar 

  26. Santini D, Ceccarelli C, Tardio ML, Taffurelli M, Marrano D. Immunocytochemical expression of epidermal growth factor receptor in myoepithelial cells of the breast. Appl Immunohistochem Mol Morphol 2002;10:29–33.

    Article  PubMed  Google Scholar 

  27. Yaziji H, Gown AM, Sneige N. Detection of stromal invasion in breast cancer: the myoepithelial markers. Adv Anat Pathol 2000;7:100–9.

    Article  PubMed  CAS  Google Scholar 

  28. Barsky SH. Myoepithelial mRNA expression profiling reveals a common tumor-suppressor phenotype. Exp Mol Pathol 2003;74:113–22.

    Article  PubMed  CAS  Google Scholar 

  29. Page MJ, Amess B, Townsend RR, Parekh R, Herath A, Brusten L, et al. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc Natl Acad Sci U S A 1999;96:12589–94.

    Article  PubMed  CAS  Google Scholar 

  30. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, et al. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res 2001;61:5697–702.

    PubMed  CAS  Google Scholar 

  31. Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 2004;64:3037–45.

    Article  PubMed  CAS  Google Scholar 

  32. Baik I, Becker PS, DeVito WJ, Lagiou P, Ballen K, Quesenberry PJ, et al. Stem cells and prenatal origin of breast cancer. Cancer Causes Control 2004;15:517–30.

    Article  PubMed  Google Scholar 

  33. Trichopoulos D. Intrauterine environment, mammary gland mass and breast cancer risk. Breast Cancer Res 2003;5:42–4.

    Article  PubMed  Google Scholar 

  34. Clemons M, Loijens L, Goss P. Breast cancer risk following irradiation for Hodgkins disease. Cancer Treat Rev 2000;26:291–302.

    Article  PubMed  CAS  Google Scholar 

  35. Hildreth NG, Shore RE, Dvoretsky PM. The risk of breast cancer after irradiation of the thymus in infancy. N Engl J Med 1989;321:1281–4.

    Article  PubMed  CAS  Google Scholar 

  36. Osin PP, Anbazhagan R, Bartkova J, Nathan B, Gusterson BA. Breast development gives insights into breast disease. Histopathology 1998;33:275–83.

    Article  PubMed  CAS  Google Scholar 

  37. Anbazhagan R, Osin PP, Bartkova J, Nathan B, Lane EB, Gusterson BA. The development of epithelial phenotypes in the human fetal and infant breast. J Pathol 1998;184:197–206.

    Article  PubMed  CAS  Google Scholar 

  38. Naccarato AG, Viacava P, Vignati S, Fanelli G, Bonadio AG, Montruccoli G, et al. Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch 2000;436:431–8.

    Article  PubMed  CAS  Google Scholar 

  39. Jolicoeur F, Gaboury LA, Oligny LL. Basal cells of second trimester fetal breasts: immunohistochemical study of myoepithelial precursors. Pediatr Dev Pathol 2003;6:398–413.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang RR, Man YG, Vang R, Saenger JS, Barner R, Wheeler DT, et al. A subset of morphologically distinct mammary myoepithelial cells lacks corresponding immunophenotypic markers. Breast Cancer Res 2003;5:R151–6.

    Article  PubMed  CAS  Google Scholar 

  41. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004;6:R605–15.

    Article  PubMed  CAS  Google Scholar 

  42. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. in vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17:1253–70.

    Article  PubMed  CAS  Google Scholar 

  43. Hoogerbrugge N, Bult P, de Widt-Levert LM, Beex LV, Kiemeney LA, Ligtenberg MJ, et al. High prevalence of premalignant lesions in prophylactically removed breasts from women at hereditary risk for breast cancer. J Clin Oncol 2003;21:41–5.

    Article  PubMed  CAS  Google Scholar 

  44. Adem C, Jenkins RB, Capron F, Stoppa-Lyonnet D. High-risk lesions in high-risk women: a high-risk formalin-based biology. J Clin Oncol 2004;22:1159–61; author reply 1161–2.

    Google Scholar 

  45. James LA, Mitchell EL, Menasce L, Varley JM. Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene 1997;14:1059–65.

    Article  PubMed  CAS  Google Scholar 

  46. Waldman FM, DeVries S, Chew KL, Moore DH, 2nd, Kerlikowske K, Ljung BM. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 2000;92:313–20.

    Article  PubMed  CAS  Google Scholar 

  47. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Welzl G, et al. Extensive ductal carcinoma in situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int J Cancer 2000;85:82–6.

    Article  PubMed  CAS  Google Scholar 

  48. Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J Pathol 2005;205:248–54.

    Article  PubMed  CAS  Google Scholar 

  49. Leonard GD, Swain SM. Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 2004;96:906–20.

    Article  PubMed  Google Scholar 

  50. Li CI, Daling JR, Malone KE. Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980–2001. Cancer Epidemiol Biomarkers Prev 2005;14:1008–11.

    Article  PubMed  Google Scholar 

  51. Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med 2004;350:1430–41.

    Article  PubMed  CAS  Google Scholar 

  52. Damiani S, Ludvikova M, Tomasic G, Bianchi S, Gown AM, Eusebi V. Myoepithelial cells and basal lamina in poorly differentiated in situ duct carcinoma of the breast. An immunocytochemical study. Virchows Arch 1999;434:227–34.

    Article  PubMed  CAS  Google Scholar 

  53. Tobacman JK. Filament disassembly and loss of mammary myoepithelial cells after exposure to lambda-carrageenan. Cancer Res 1997;57:2823–6.

    PubMed  CAS  Google Scholar 

  54. Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML, et al. The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene 2000;19:3449–59.

    Article  PubMed  CAS  Google Scholar 

  55. Shao ZM, Nguyen M, Alpaugh ML, OConnell JT, Barsky SH. The human myoepithelial cell exerts antiproliferative effects on breast carcinoma cells characterized by p21WAF1/CIP1 induction, G2/M arrest, and apoptosis. Exp Cell Res 1998;241:394–403.

    Article  PubMed  CAS  Google Scholar 

  56. Sternlicht MD, Safarians S, Calcaterra TC, Barsky SH. Establishment and characterization of a novel human myoepithelial cell line and matrix-producing xenograft from a parotid basal cell adenocarcinoma. In Vitro Cell Dev Biol Anim 1996;32:550–63.

    Google Scholar 

  57. Jones JL, Shaw JA, Pringle JH, Walker RA. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol 2003;201:562–72.

    Article  PubMed  CAS  Google Scholar 

  58. Shao ZM, Radziszewski WJ, Barsky SH. Tamoxifen enhances myoepithelial cell suppression of human breast carcinoma progression in vitro by two different effector mechanisms. Cancer Lett 2000;157:133–44.

    Article  PubMed  CAS  Google Scholar 

  59. Chi A, Chen X, Chirala M, Younes M. Differential expression of estrogen receptor beta isoforms in human breast cancer tissue. Anticancer Res 2003;23:211–6.

    PubMed  CAS  Google Scholar 

  60. Tobacman JK, Hinkhouse M, Khalkhali-Ellis Z. Steroid sulfatase activity and expression in mammary myoepithelial cells. J Steroid Biochem Mol Biol 2002;81:65–8.

    Article  PubMed  CAS  Google Scholar 

  61. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 1998;90:1138–45.

    Article  PubMed  CAS  Google Scholar 

  62. Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C. Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 2001;10:1907–13.

    Article  PubMed  CAS  Google Scholar 

  63. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 2000;60:2562–6.

    PubMed  CAS  Google Scholar 

  64. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 2002;32:355–7.

    Article  PubMed  CAS  Google Scholar 

  65. Larson PS, de las Morenas A, Bennett SR, Cupples LA, Rosenberg CL. Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. Am J Pathol 2002;161:283–90.

    PubMed  Google Scholar 

  66. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 1996;274:2057–9.

    Article  PubMed  CAS  Google Scholar 

  67. Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL, Eng C. Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res 2004;64:7231–6.

    Article  PubMed  CAS  Google Scholar 

  68. Dietrich CU, Pandis N, Teixeira MR, Bardi G, Gerdes AM, Andersen JA, et al. Chromosome abnormalities in benign hyperproliferative disorders of epithelial and stromal breast tissue. Int J Cancer 1995;60:49–53.

    PubMed  CAS  Google Scholar 

  69. Iqbal M, Shoker BS, Foster CS, Jarvis C, Sibson DR, Davies MP. Molecular and genetic abnormalities in radial scar. Hum Pathol 2002;33:715–22.

    Article  PubMed  CAS  Google Scholar 

  70. Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odel C, et al. Genetic alterations in ‘normal’ luminal and myoepithelial cells of the breast. J Pathol 1999;189:496–503.

    Article  PubMed  CAS  Google Scholar 

  71. Peyrol S, Raccurt M, Gerard F, Gleyzal C, Grimaud JA, Sommer P. Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am J Pathol 1997;150(2):497–507.

    PubMed  CAS  Google Scholar 

  72. Stephenson JM, Banerjee S, Saxena NK, Cherian R, Banerjee SK. Neuropilin-1 is differentially expressed in myoepithelial cells and vascular smooth muscle cells in preneoplastic and neoplastic human breast: a possible marker for the progression of breast cancer. Int J Cancer 2002;101:409–14.

    Article  PubMed  CAS  Google Scholar 

  73. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6:17–32.

    Article  PubMed  CAS  Google Scholar 

  74. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001;1:46–54.

    Article  PubMed  CAS  Google Scholar 

  75. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121:335–48.

    Article  PubMed  CAS  Google Scholar 

  76. Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 2005;37:899–905.

    Article  PubMed  CAS  Google Scholar 

  77. Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 2005;5:223–31.

    Article  PubMed  CAS  Google Scholar 

  78. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004;4:143–53.

    Article  PubMed  CAS  Google Scholar 

  79. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000;405:482–5.

    Article  PubMed  CAS  Google Scholar 

  80. Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 2000;19:4337–45.

    Article  PubMed  CAS  Google Scholar 

  81. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995;95:859–73.

    Article  PubMed  CAS  Google Scholar 

  82. Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 2003;21:514–20.

    Article  PubMed  Google Scholar 

  83. Brittan M, Hunt T, Jeffery R, Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut 2002;50:752–7.

    Article  PubMed  CAS  Google Scholar 

  84. Russo J, Russo IH. Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia 2000;5:187–200.

    Article  PubMed  CAS  Google Scholar 

  85. Boland GP, Knox WF, Bundred NJ. Molecular markers and therapeutic targets in ductal carcinoma in situ. Microsc Res Tech 2002;59:3–11.

    Article  PubMed  CAS  Google Scholar 

  86. Miller F. Xenograft models of premalignant breast disease. J Mammary Gland Biol Neoplasia 2000;5:379–91.

    Article  PubMed  CAS  Google Scholar 

  87. Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ [letter]. J Natl Cancer Inst 2000;92:1185–6.

    Article  PubMed  CAS  Google Scholar 

  88. Tait L, Dawson PJ, Wolman SR, Galea K, Miller FR. Multipotent human breast stem cell line MCF10AT. Int J Oncol 1996;9:263–67.

    Google Scholar 

  89. Barsky SH, Doberneck SA, Sternlicht MD, Grossman DA, Love SM. ‘Revertant’ DCIS in human axillary breast carcinoma metastases. J Pathol 1997;183:188–94.

    Article  PubMed  CAS  Google Scholar 

  90. Laakso M, Loman N, Borg A, Isola J. Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 2005.

  91. Steele VE, Hawk ET, Viner JL, Lubet RA. Mechanisms and applications of non-steroidal anti-inflammatory drugs in the chemoprevention of cancer. Mutat Res 2003;523–24:137–44.

    Google Scholar 

  92. Man YG, Tai L, Barner R, Vang R, Saenger JS, Shekitka KM, et al. Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion. Breast Cancer Res 2003;5(6):R231–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornelia Polyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyak, K., Hu, M. Do Myoepithelial Cells Hold the Key for Breast Tumor Progression?. J Mammary Gland Biol Neoplasia 10, 231–247 (2005). https://doi.org/10.1007/s10911-005-9584-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-005-9584-6

Key Words

Navigation