Skip to main content

Advertisement

Log in

Myoepithelial Cells: Their Origin and Function in Breast Morphogenesis and Neoplasia

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The human breast epithelium is a branching ductal system composed of an inner layer of polarized luminal epithelial cells and an outer layer of myoepithelial cells that terminate in distally located terminal duct lobular units (TDLUs). While the luminal epithelial cell has received the most attention as the functionally active milk-producing cell and as the most likely target cell for carcinogenesis, attention on myoepithelial cells has begun to evolve with the recognition that these cells play an active part in branching morphogenesis and tumor suppression. A major question that has been the subject of investigation pertains to how the luminal epithelial and myoepithelial lineages are related and precisely how they arise from a common putative stem cell population within the breast. Equally important is the question of how heterotypic signaling occurs between luminal epithelial and surrounding myoepithelial cells in normal breast morphogenesis and neoplasia. In this review we discuss data from our laboratories and from others regarding the cellular origin of human myoepithelial cells, their function in maintaining tissue polarity in the normal breast, and their role during neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rønnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol Rev 1996;76:69–125.

    PubMed  Google Scholar 

  2. Davies JA. Do different branching epithelia use a conserved developmental mechanism? Bioessays 2002;24:937–48.

    Article  PubMed  CAS  Google Scholar 

  3. Pechoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol 1999;206:88–99.

    Article  PubMed  CAS  Google Scholar 

  4. Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissell MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 2002;16:693–706.

    Article  PubMed  CAS  Google Scholar 

  5. Fridriksdottir AJ, Villadsen R, Gudjonsson T, Petersen OW. Maintenance of cell type diversification in the human breast. J Mammary Gland Biol Neoplasia 2005;10:61–74.

    Article  PubMed  Google Scholar 

  6. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005;118:3585–94.

    Article  PubMed  CAS  Google Scholar 

  7. Sainsbury JR, Anderson TJ, Morgan DA. ABC of breast diseases: Breast cancer. BMJ 2000;321:745–50.

    Article  PubMed  CAS  Google Scholar 

  8. Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol 2001;3:823–30.

    Article  PubMed  CAS  Google Scholar 

  9. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 2002;115:39–50.

    PubMed  CAS  Google Scholar 

  10. Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH. The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 1997;3:1949–58.

    PubMed  CAS  Google Scholar 

  11. Gusterson BA, Warburton MJ, Mitchell D, Ellison M, Neville AM, Rudland PS. Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res 1982;42:4763–70.

    PubMed  CAS  Google Scholar 

  12. Sternlicht MD, Barsky SH. The myoepithelial defense: A host defense against cancer. Med Hypotheses 1997;48:37–46.

    Article  PubMed  CAS  Google Scholar 

  13. Glukhova M, Koteliansky V, Sastre X, Thiery JP. Adhesion systems in normal breast and in invasive breast carcinoma. Am J Pathol 1995;146:706–16.

    PubMed  CAS  Google Scholar 

  14. Emerman JT, Vogl AW. Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat Rec 1986;216:405–15.

    Article  PubMed  CAS  Google Scholar 

  15. Dairkee S, Heid HW. Cytokeratin profile of immunomagnetically separated epithelial subsets of the human mammary gland. In Vitro Cell Dev Biol Anim 1993;29A:427–32.

    PubMed  CAS  Google Scholar 

  16. Deugnier MA, Faraldo MM, Rousselle P, Thiery JP, Glukhova MA. Cell–extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. J Cell Sci 1999;112:1035–44.

    PubMed  CAS  Google Scholar 

  17. Warburton MJ, Ormerod EJ, Monaghan P, Ferns S, Rudland PS. Characterization of a myoepithelial cell line derived from a neonatal rat mammary gland. J Cell Biol 1981;91:827–36.

    Article  PubMed  CAS  Google Scholar 

  18. Hansen SH, Petersen OW, Sandvig K, Olsnes S, van Deurs B. Internalized ricin and the plasma membrane glycoprotein MAM-6 colocalize in the trans-Golgi network of T47D human breast carcinoma cells. Exp Cell Res 1989;185:373–86.

    Article  PubMed  CAS  Google Scholar 

  19. Hamperl H. The myothelia (myoepithelial cells). Normal state; regressive changes; hyperplasia; tumors. Curr Top Pathol 1970;53:161–220.

    PubMed  CAS  Google Scholar 

  20. Murrell TG. The potential for oxytocin (OT) to prevent breast cancer: A hypothesis. Breast Cancer Res Treat 1995;35:225–9.

    Article  PubMed  CAS  Google Scholar 

  21. Bussolati G, Cassoni P, Ghisolfi G, Negro F, Sapino A. Immunolocalization and gene expression of oxytocin receptors in carcinomas and non-neoplastic tissues of the breast. Am J Pathol 1996;148:1895–903.

    PubMed  CAS  Google Scholar 

  22. Petersen OW, van Deurs B. Growth factor control of myoepithelial-cell differentiation in cultures of human mammary gland. Differentiation 1988;39:197–215.

    PubMed  CAS  Google Scholar 

  23. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA 1993;90:999–1003.

    Article  PubMed  CAS  Google Scholar 

  24. Warburton MJ, Mitchell D, Ormerod EJ, Rudland P. Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J Histochem Cytochem 1982;30:667–76.

    PubMed  CAS  Google Scholar 

  25. Koukoulis GK, Virtanen I, Korhonen M, Laitinen L, Quaranta V, Gould VE. Immunohistochemical localization of integrins in the normal, hyperplastic, and neoplastic breast. Correlations with their functions as receptors and cell adhesion molecules. Am J Pathol 1991;139:787–99.

    PubMed  CAS  Google Scholar 

  26. Koukoulis GK, Howeedy AA, Korhonen M, Virtanen I, Gould VE. Distribution of tenascin, cellular fibronectins and integrins in the normal, hyperplastic and neoplastic breast. J Submicrosc Cytol Pathol 1993;25:285–95.

    PubMed  CAS  Google Scholar 

  27. Yamamoto T, Oda K, Miyazaki K, Ichigotani Y, Takenouchi Y, Kamei T, Shirafuji N, Nimura Y, Hamaguchi M, Matsuda S. p73 is highly expressed in myoepithelial cells and in carcinomas with metaplasia. Int J Oncol 2001;19:271–6.

    PubMed  CAS  Google Scholar 

  28. Zhang RR, Man YG, Vang R, Saenger JS, Barner R, Wheeler DT, Liang CY, Vinh TN, Bratthauer GL. A subset of morphologically distinct mammary myoepithelial cells lacks corresponding immunophenotypic markers. Breast Cancer Res 2003;5:R151–6.

    Article  PubMed  CAS  Google Scholar 

  29. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Steele D, Cossu A, Budroni M, Palmieri G, Lakhani, SR. Distribution and significance of 14-3-3sigma, a novel myoepithelial marker, in normal, benign, and malignant breast tissue. J Pathol 2004;202:274–85.

    Article  PubMed  CAS  Google Scholar 

  30. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: Good fences make good neighbors. Breast Cancer Res 2005;7:190–7.

    Article  PubMed  CAS  Google Scholar 

  31. O’Hare MJ, Ormerod MG, Monaghan P, Lane EB, Gusterson BA. Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation 1991;46:209–21.

    PubMed  CAS  Google Scholar 

  32. Clarke C, Titley J, Davies S, O’Hare MJ. An immunomagnetic separation method using superparamagnetic (MACS) beads for large-scale purification of human mammary luminal and myoepithelial cells. Epithelial Cell Biol 1994;3:38–46.

    PubMed  CAS  Google Scholar 

  33. Gomm JJ, Browne PJ, Coope RC, Liu QY, Buluwela L, Coombes RC. Isolation of pure populations of epithelial and myoepithelial cells from the normal human mammary gland using immunomagnetic separation with Dynabeads. Anal Biochem 1995;226:91–9.

    Article  PubMed  CAS  Google Scholar 

  34. Smalley MJ, Titley J, Paterson H, Perusinghe N, Clarke C, O’Hare MJ. Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analysed by indirect immunofluorescence of cytoskeletal antigens. J Histochem Cytochem 1999;47:1513–24.

    PubMed  CAS  Google Scholar 

  35. Dundas SR, Ormerod MG, Gusterson BA, O’Hare MJ. Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J Cell Sci 1991;100(Pt 3):459–71.

    PubMed  Google Scholar 

  36. Petersen OW, Gudjonsson T, Villadsen R, Bissell MJ, Ronnov-Jessen L. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia. Cell Prolif 2003;36(Suppl 1):33–44.

    Article  PubMed  Google Scholar 

  37. Smalley MJ, Titley J, O’Hare MJ. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell Dev Biol Anim 1998;34:711–21.

    PubMed  CAS  Google Scholar 

  38. Kao CY, Nomata K, Oakley CS, Welsch CW, Chang CC. Two types of normal human breast epithelial cells derived from reduction mammoplasty: Phenotypic characterization and response to SV40 transfection. Carcinogenesis 1995;16:531–8.

    PubMed  CAS  Google Scholar 

  39. Stingl J, Raouf A, Emerman JT, Eaves CJ. Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia 2005;10:49–59.

    Article  PubMed  Google Scholar 

  40. Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 1998;63:201–13.

    Article  PubMed  CAS  Google Scholar 

  41. Chepko G, Smith GH. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 1997;29:239–53.

    Article  PubMed  CAS  Google Scholar 

  42. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech 2001;52:190–203.

    Article  PubMed  CAS  Google Scholar 

  43. Radnor CJ. Myoepithelial cell differentiation in rat mammary glands. J Anat 1972;111:381–98.

    PubMed  CAS  Google Scholar 

  44. Bennett DC. Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature 1980;285:657–9.

    Article  PubMed  CAS  Google Scholar 

  45. Rudland PS, Ormerod EJ, Paterson FC. Stem cells in rat mammary development and cancer: A review. J R Soc Med 1980;73:437–42.

    PubMed  CAS  Google Scholar 

  46. Smith CA, Monaghan P, Neville AM. Basal clear cells of the normal human breast. Virchows Arch A Pathol Anat Histopathol 1984;402:319–29.

    Article  PubMed  CAS  Google Scholar 

  47. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 1989;105:223–35.

    PubMed  CAS  Google Scholar 

  48. Aggeler J, Ward J, Blackie LM, Barcellos-Hoff MH, Streuli CH, Bissell MJ. Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J Cell Sci 1991;99:407–17.

    PubMed  Google Scholar 

  49. Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 1992;89:9064–8.

    Article  PubMed  CAS  Google Scholar 

  50. Howlett AR, Bailey N, Damsky C, Petersen OW, Bissell MJ. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sci 1995;108(Pt 5):1945–57.

    PubMed  CAS  Google Scholar 

  51. Colognato H, Yurchenco PD. Form and function: The laminin family of heterotrimers. Dev Dyn 2000;218:213–34.

    Article  PubMed  CAS  Google Scholar 

  52. Klein G, Langegger M, Timpl R, Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell 1988;55:331–41.

    Article  PubMed  CAS  Google Scholar 

  53. Schuger L, Yurchenco P, Relan NK, Yang Y. Laminin fragment E4 inhibition studies: Basement membrane assembly and embryonic lung epithelial cell polarization requires laminin polymerization. Int J Dev Biol 1998;42:217–20.

    PubMed  CAS  Google Scholar 

  54. Hoffman MP, Kibbey MC, Letterio JJ, Kleinman HK. Role of laminin-1 and TGF-beta 3 in acinar differentiation of a human submandibular gland cell line (HSG). J Cell Sci 1996;109:2013–21.

    PubMed  CAS  Google Scholar 

  55. Hoffman MP, Nomizu M, Roque E, Lee S, Jung DW, Yamada Y, Kleinman HK. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem 1998;273:28633–41.

    Article  PubMed  CAS  Google Scholar 

  56. Bello-DeOcampo D, Kleinman HK, Deocampo ND, Webber MM. Laminin-1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and malignant human prostate epithelial cells. Prostate 2001;46:142–53.

    Article  PubMed  CAS  Google Scholar 

  57. Garrod DR, Merritt AJ, Nie Z. Desmosomal cadherins. Curr Opin Cell Biol 2002;14:537–45.

    Article  PubMed  CAS  Google Scholar 

  58. Bissell MJ, Bilder D. Polarity determination in breast tissue: Desmosomal adhesion, myoepithelial cells, and laminin 1. Breast Cancer Res 2003;5:117–9.

    Article  PubMed  CAS  Google Scholar 

  59. Bissell MJ, Hall HG. Form and function in the mammary gland: The role of extracellular matrix. In: Neville MC and Daniel CW, editors. The mammary gland: Development, regulation and function. New York: Plenum; 1987. p. 97–146.

    Google Scholar 

  60. Rudland PS. Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metastasis Rev 1987;6:55–83.

    Article  PubMed  CAS  Google Scholar 

  61. Albrechtsen R, Nielsen M, Wewer U, Engvall E, Ruoslahti E. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin. Cancer Res 1981;41:5076–81.

    PubMed  CAS  Google Scholar 

  62. Wetzels RH, Holland R, van Haelst UJ, Lane EB, Leigh IM, Ramaekers FC. Detection of basement membrane components and basal cell keratin 14 in noninvasive and invasive carcinomas of the breast. Am J Pathol 1989;134:571–9.

    PubMed  CAS  Google Scholar 

  63. Wada T, Yasutomi M, Hashmura K, Kunikata M, Tanaka T, Mori M. Vimentin expression in benign and malignant lesions in the human mammary gland. Anticancer Res 1992;12:1973–82.

    PubMed  CAS  Google Scholar 

  64. Petersen OW, Lind Nielsen H, Gudjonsson T, Villadsen R, Ronnov-Jessen L, Bissell MJ. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 2001;3:213–7.

    Article  PubMed  CAS  Google Scholar 

  65. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003;100:8418–23.

    Article  PubMed  CAS  Google Scholar 

  66. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  67. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  68. Malzahn K, Mitze M, Thoenes M, Moll R. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch 1998;433:119–29.

    Article  PubMed  CAS  Google Scholar 

  69. Petersen OW, van Deurs B, Nielsen KV, Madsen MW, Laursen I, Balslev I, Briand P. Differential tumorigenicty of two autologous human breast carcinoma cell lines, HMT-3909S1 and HMT-3909S8, established in serum-free medium. Cancer Res 1990;50:1257–70.

    PubMed  CAS  Google Scholar 

  70. Rønnov-Jessen L, Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 1993;68:696–707.

    PubMed  Google Scholar 

  71. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Bissell MJ, Petersen OW. To create the correct microenvironment: Three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 2003;30:247–55.

    Article  PubMed  CAS  Google Scholar 

  72. Kasami M, Olson SJ, Simpson JF, Page DL. Maintenance of polarity and a dual cell population in adenoid cystic carcinoma of the breast: An immunohistochemical study. Histopathology 1998;32:232–8.

    Article  PubMed  CAS  Google Scholar 

  73. Lundin J, Lundin M, Holli K, Kataja VV, Elomaa L, Pylkkanen L, Turpeenniemi-Hujanen T, Joensuu H. Omission of histologic grading from clinical decision making may result in overuse of adjuvant therapies in breast cancer: Results from a nationwide study. J Clin Oncol 2001;19:28–36.

    PubMed  CAS  Google Scholar 

  74. Hayashi Y, Aoki Y, Eto R, Tokuoka S. Findings of myoepithelial cells in human breast cancer. Ultrastructural and immunohistochemical study by means of anti-myosin antibody. Acta Pathol Jpn 1984;34:537–52.

    PubMed  CAS  Google Scholar 

  75. Kenny PA, Bissell MJ. Tumor reversion: Correction of malignant behavior by microenvironmental cues. Int J Cancer 2003;107:688–95.

    Article  PubMed  CAS  Google Scholar 

  76. Bissell MJ, Kenny PA, Radisky D. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: The role of extracellular matrix and its degrading enzymes. Cold Spring Harbor Symp Quant Biol 2005;70:1–14.

    Google Scholar 

  77. Foschini MP, Eusebi V. Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature. Virchows Arch 1998;432:303–10.

    Article  PubMed  CAS  Google Scholar 

  78. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6:17–32.

    Article  PubMed  CAS  Google Scholar 

  79. Chepko G, Smith GH. Mammary epithelial stem cells: Our current understanding. J Mammary Gland Biol Neoplasia 1999;4:35–52.

    Article  PubMed  CAS  Google Scholar 

  80. Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? Cancer Cell 2005;7:17–23.

    PubMed  CAS  Google Scholar 

  81. Rudland PS. Epithelial stem cells and their possible role in the development of the normal and diseased human breast. Histol Histopathol 1993;8:385–404.

    PubMed  CAS  Google Scholar 

  82. Rudland PS, Fernig DG, Smith JA. Growth factors and their receptors in neoplastic mammary glands. Biomed Pharmacother 1995;49:389–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudjonsson, T., Adriance, M.C., Sternlicht, M.D. et al. Myoepithelial Cells: Their Origin and Function in Breast Morphogenesis and Neoplasia. J Mammary Gland Biol Neoplasia 10, 261–272 (2005). https://doi.org/10.1007/s10911-005-9586-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-005-9586-4

Key Words

Navigation