Skip to main content

Advertisement

Log in

Analysis of Lactation Defects in Transgenic Mice

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Although lactation is the only physiological function of the mammary gland, little is known about the molecular events required for secretory activation and milk production. Genetically altered mice have been used extensively to study mammary gland development during puberty and pregnancy, as well as mammary tumorigenesis. A number of approaches have been used to produce genetic modifications in mammary glands of mice, including transgenic mice utilizing mammary specific promoters, traditional knockout mice, mammary-specific gene deletion, and conditionally-regulated transgenes. The same technologies can be used to study secretory activation and lactation; however only a comparatively small number of studies to date have used these approaches to study these events. In this paper we review the technologies available to make genetically modified mice for the study of secretory activation and lactation as well as specific analytical procedures that can be used to characterize mice with lactation defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Medina D. The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996;1:5–19.

    Article  CAS  PubMed  Google Scholar 

  2. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 2000;14:650–4.

    CAS  PubMed  Google Scholar 

  3. Naylor MJ, Ormandy CJ. Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn 2002;225:100–5.

    Article  CAS  PubMed  Google Scholar 

  4. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7:49–66.

    Article  PubMed  Google Scholar 

  5. Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, et al. Induction of mammary gland development in estrogen receptor_alpha knockout mice. Endocrinology 2000;141:2982–94.

    Article  CAS  PubMed  Google Scholar 

  6. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr., et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995;9:2266–78.

    CAS  PubMed  Google Scholar 

  7. Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 1995;9:2364–72.

    CAS  PubMed  Google Scholar 

  8. Blakely CM, Sintasath L, D’Cruz CM, Hahn KT, Dugan KD, Belka GK, et al. Developmental stage determines the effects of MYC in the mammary epithelium. Development 2005;132:1147–60 (erratum appears in Development. 2005 Mar;132(6):1475).

    Article  CAS  PubMed  Google Scholar 

  9. Hennighausen L, Wall RJ, Tillmann U, Li M, Furth PA. Conditional gene expression in secretory tissues and skin of transgenic mice using the MMTV–LTR and the tetracycline responsive system. J Cell Biochem 1995;59:463–72.

    Article  CAS  PubMed  Google Scholar 

  10. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 2000;19:992–1001.

    Article  CAS  PubMed  Google Scholar 

  11. Truss M, Challepakis G, Beato M. Interplay of steroid hormone receptors and transcription factors on the mouse mammary tumor virus promoter. J Steroid Biochem Mol Biol 1992;43:365–78.

    Article  CAS  PubMed  Google Scholar 

  12. Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, et al. HIF1alpha is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development 2003;130:1713–24 (reprinted Figures 2C, 4C, 5A, 5B, and 5F by permission of Company of Biologists Limited).

    Article  CAS  PubMed  Google Scholar 

  13. Hennighausen L, Wall RJ, Tillmann U, Li ML, Furth PA. Conditional gene expression in secretory tissues and skin of transgenic mice using the MMTV–LTR and the tetracycline responsive system. J Cell Biochem 1995;59:463–72.

    Article  CAS  PubMed  Google Scholar 

  14. Pittius CW, Sankaran L, Topper YJ, Hennighausen L. Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol 1988;2:1027–32.

    Article  CAS  PubMed  Google Scholar 

  15. Palmer CA, Lubon H, McManaman JL. Transgenic mice expressing recombinant human protein C exhibit defects in lactation and impaired mammary gland development. Transgenic Res 2003;12:283–92 (reprinted Figures 1, 2A, and 3A by permission of Kluwer).

    Article  CAS  PubMed  Google Scholar 

  16. Clark AJ, Archibald AL, McClenaghan M, Simons JP, Wallace R, Whitelaw CB. Enhancing the efficiency of transgene expression. Philos Trans R Soc Lond, B Biol Sci 1993;339:225–32.

    CAS  Google Scholar 

  17. Whitelaw CB, Harris S, McClenaghan M, Simons JP, Clark AJ. Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem J 1992;286:31–9.

    CAS  PubMed  Google Scholar 

  18. Paleyanda RK, Zhang DW, Hennighausen L, McKnight RA, Lubon H. Regulation of human protein C gene expression by the mouse WAP promoter. Transgenic Res 1995;4:335–43.

    Article  Google Scholar 

  19. Rosen JM, Li S, Raught B, Hadsell D. The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Am J Clin Nutr 1996;63:627S–32S.

    CAS  PubMed  Google Scholar 

  20. Clark AJ. Gene expression in the mammary glands of transgenic animals. Biochem Soc Symp 1998;63:133–40.

    CAS  PubMed  Google Scholar 

  21. Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 2002;16:283–92.

    Article  CAS  PubMed  Google Scholar 

  22. Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 2003;44:1100–12 (reprinted Figures 6B and 6D by permission of Federation of American Societies for Experimental Biology).

    Article  CAS  PubMed  Google Scholar 

  23. Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 1993;7:2308–17.

    CAS  PubMed  Google Scholar 

  24. Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, et al. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 1993;12:1835–45.

    CAS  PubMed  Google Scholar 

  25. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997;11:179–86.

    CAS  PubMed  Google Scholar 

  26. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 1997;25:4323–30.

    Article  CAS  PubMed  Google Scholar 

  27. Selbert S, Bentley DJ, Melton DW, Rannie D, Lourenco P, Watson CJ, et al. Efficient BLG-Cre mediated gene deletion in the mammary gland. Transgenic Res 1998;7:387–96.

    Article  CAS  PubMed  Google Scholar 

  28. Furth PA. Conditional control of gene expression in the mammary gland. J Mammary Gland Biol Neoplasia 1997;2:373–83.

    Article  CAS  PubMed  Google Scholar 

  29. Triplett AA, Sakamoto K, Matulka LA, Shen L, Smith GH. Expression of the Whey Acidic Protein (Wap) Expression of the Whey Acidic Protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis 2005;43:1–11.

    Article  CAS  PubMed  Google Scholar 

  30. Hadsell DL, Bonnette S, George J, Torres D, Klementidis Y, Gao S, et al. Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol 2003;17:2251–67.

    Article  CAS  PubMed  Google Scholar 

  31. Forster C, Makela S, Warri A, Kietz S, Becker D, Hultenby K, et al. Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci USA 2002;99:15578–83.

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia 1998;3:233–46 (reprinted Figure 4B by permission of Kluwer/Plenum).

    Article  CAS  PubMed  Google Scholar 

  33. Faraldo MM, Deugnier MA, Lukashev M, Thiery JP, Glukhova MA. Perturbation of beta1–integrin function alters the development of murine mammary gland. EMBO J 1998;17:2139–47.

    Article  CAS  PubMed  Google Scholar 

  34. Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52:182–9.

    Article  CAS  PubMed  Google Scholar 

  35. Thomasset N, Lochter A, Sympson CJ, Lund LR, Williams DR, Behrendtsen O, et al. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol 1998;153:457–67.

    CAS  PubMed  Google Scholar 

  36. Robinson GW, McKnight RA, Smith GH, Hennighausen L. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 1995;121:2079–90.

    CAS  PubMed  Google Scholar 

  37. Blackman B, Russell T, Nordeen SK, Medina D, Neville MC. Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res 2005;7:R248–55.

    Article  CAS  PubMed  Google Scholar 

  38. Elias JJ, Pitelka DR, Armstrong RC. Changes in fat cell morphology during lactation in the mouse. Anat Rec 1973;177:533–47.

    Article  CAS  PubMed  Google Scholar 

  39. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8:287–307.

    Article  PubMed  Google Scholar 

  40. Clarkson RW, Watson CJ. Microarray analysis of the involution switch. J Mammary Gland Biol Neoplasia 2003;8:309–19.

    Article  PubMed  Google Scholar 

  41. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3 (see comment). Breast Cancer Res 2004;6:R75–91.

    Article  CAS  PubMed  Google Scholar 

  42. Lucas A, Gibbs JA, Lyster RL, Baum JD. Creamatocrit: simple clinical technique for estimating fat concentration and energy value of human milk. Br Med J 1978;1:1018–20.

    Article  CAS  PubMed  Google Scholar 

  43. Anderson NK, Beerman KA, McGuire MA, Dasgupta N, Griinari JM, Williams J, et al. Dietary fat type influences total milk fat content in lean women. J Nutr 2005;135:416–21.

    CAS  PubMed  Google Scholar 

  44. Glover MT, Atherton DJ. Transient zinc deficiency in two full-term breast-fed siblings associated with low maternal breast milk zinc concentration. Ped Dermatol 1988;5:10–3.

    CAS  Google Scholar 

  45. Lee D-Y, Shay NF, Cousins RJ. Altered zinc metabolism occurs in murine lethal milk syndrome. J Nutr 1992;122:2233–8.

    CAS  PubMed  Google Scholar 

  46. Burdon T, Wall RJ, Shamay A, Smith GH, Hennighausen L. Over-expression of an endogenous milk protein gene in transgenic mice is associated with impaired mammary alveolar development and a milchlos phenotype. Mech Dev 1991;36:67–74.

    Article  CAS  PubMed  Google Scholar 

  47. Andres AC, van der Valk MA, Schonenberger CA, Fluckiger F, LeMeur M, Gerlinger P, et al. Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev 1988;2:1486–95.

    CAS  PubMed  Google Scholar 

  48. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, et al. Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994;8:2691–703.

    PubMed  Google Scholar 

  49. Davenport TG, Jerome-Majewska LA, Papaioannou VE. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 2003;130:2263–73.

    Article  CAS  PubMed  Google Scholar 

  50. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000;24:391–5.

    Article  CAS  PubMed  Google Scholar 

  51. Dunbar ME, Dann PR, Robinson GW, Hennighausen L, Zhang JP, Wysolmerski JJ. Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development 1999;126:3485–93.

    CAS  PubMed  Google Scholar 

  52. Xie W, Paterson AJ, Chin E, Nabell LM, Kudlow JE. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol 1997;11:1766–81.

    Article  CAS  PubMed  Google Scholar 

  53. Smith GH, Gallahan D, Diella F, Jhappan C, Merlino G, Callahan R. Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ 1995;6:563–77.

    CAS  PubMed  Google Scholar 

  54. Gourdou I, Paly J, Hue-Beauvais C, Pessemesse L, Clark J, Djiane J. Expression by transgenesis of a constitutively active mutant form of the prolactin receptor induces premature abnormal development of the mouse mammary gland and lactation failure. Biol Reprod 2004;70:718–28.

    Article  CAS  PubMed  Google Scholar 

  55. Kim H, Laing M, Muller W. c-Src-null mice exhibit defects in normal mammary gland development and ERalpha signaling. Oncogene 2005;24:5629–36.

    Article  CAS  PubMed  Google Scholar 

  56. Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, et al. Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology 2000;141:2982–94.

    Article  CAS  PubMed  Google Scholar 

  57. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995;9:2266–78.

    CAS  PubMed  Google Scholar 

  58. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 1998;279:1922–5.

    Article  CAS  PubMed  Google Scholar 

  59. Wynick D, Bacon A. Targeted disruption of galanin: new insights from knock-out studies. Neuropeptides 2002;36:132–44.

    Article  CAS  PubMed  Google Scholar 

  60. Andrechek ER, White D, Muller WJ. Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene 2005;24:932–7.

    Article  CAS  PubMed  Google Scholar 

  61. Witty JP, Wright JH, Matrisian LM. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol Biol Cell 1995;6:1287–303.

    CAS  PubMed  Google Scholar 

  62. Sympson, CJ, Talhouk RS, Alexander CM, Chin JR, Clift SM, Bissell MJ, et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression.[erratum appears in J Cell Biol 1996 Feb;132(4):following 752]. J Cell Biol 1994;125:681–93.

    Article  CAS  PubMed  Google Scholar 

  63. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 1997;16:6926–35.

    Article  CAS  PubMed  Google Scholar 

  64. Webster MA, Cardiff RD, Muller WJ. Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene. Proc Natl Acad Sci USA 1995;92:7849–53.

    Article  CAS  PubMed  Google Scholar 

  65. Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996;56:775–85.

    CAS  PubMed  Google Scholar 

  66. Burdon T, Wall RJ, Shamay A, Smith GH, Hennighausen L. Over-expression of an endogenous milk protein gene in transgenic mice is associated with impaired mammary alveolar development and a milchlos phenotype. Mech Dev 1991;36:67–74.

    Article  CAS  PubMed  Google Scholar 

  67. Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA 1994;91:9312–6.

    Article  CAS  PubMed  Google Scholar 

  68. Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO J 2005;24:1942–53.

    Article  CAS  PubMed  Google Scholar 

  69. Ho MY, Murphy D. A bovine oxytocin transgene in mice: expression in the female reproductive organs and regulation during pregnancy, parturition and lactation. Mol Cell Endocrinol 1997;136:15–21.

    Article  CAS  PubMed  Google Scholar 

  70. Stinnakre MG, Vilotte JL, Soulier S, Mercier JC. Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci USA 1994;91:6544–8.

    Article  CAS  PubMed  Google Scholar 

  71. Wagner KU, Young WS 3rd, Liu X, Ginns EI, Li M, Furth PA, et al. Oxytocin and milk removal are required for post-partum mammary-gland development. Genes Funct 1997;1:233–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CAP was supported by NRSA Fellowship HD044359; MCN, SMA and JLM were supported by NIH grants; P01 HD038129 (MCN, SMA, JLM), R01 DK63674 (SMA) and RO1 HD045965 (JLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. McManaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, C.A., Neville, M.C., Anderson, S.M. et al. Analysis of Lactation Defects in Transgenic Mice. J Mammary Gland Biol Neoplasia 11, 269–282 (2006). https://doi.org/10.1007/s10911-006-9023-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9023-3

Keywords

Navigation