Skip to main content

Advertisement

Log in

Translational Regulation of Milk Protein Synthesis at Secretory Activation

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Studies conducted since the 1970s have revealed that the production of milk proteins in the mammary gland under the influence of lactogenic hormones (insulin, prolactin, and glucocorticoids) is regulated at multiple levels. Whereas earlier studies concentrated on transcriptional regulation and stabilization of milk protein mRNAs, more recent studies have revealed that translation of milk protein mRNAs is also dependent on lactogenic hormones. A general stimulation of translation in mammary epithelial cells is caused by amino acids (as signaling molecules) or by phosphorylation of the translational regulator 4E-BP1 in a synergistic response to signals from insulin and prolactin. However, a selective enhancement of milk protein mRNA translation is caused by cytoplasmic polyadenylation of mRNA, again in a synergistic response to these two hormones. Preliminary evidence indicates that the latter effect depends on the existence of a cytoplasmic polyadenylation element (CPE) in milk protein mRNAs and phosphorylation of its binding protein, CPEB. Experiments in whole animals, organ explants, and cell culture have shown that the poly(A) length of milk protein mRNAs changes as a function of the lactation cycle. Interestingly, cytoplasmic polyadenylation is likely to be responsible for the selective hormone-dependent enhancement of both translation and stability of milk protein mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ARE:

AU-rich elements

CPE:

cytoplasmic polyadenylation element

CPEB:

the CPE-binding protein

CPSF:

cleavage and polyadenylation specificity factor

P-bodies:

mRNA processing bodies

PAP:

poly(A) polymerase

PARN:

poly(A) specific ribonuclease

RRL:

rabbit reticulocyte lysate

t 1/2 :

half-life

UTR:

untranslated region

WAP:

whey acidic protein

References

  1. Houdebine L-M, Djiane J, Dusanter-Fourt I, Martel P, Kelly PA, Devinoy E, et al. Hormonal action controlling mammary activity. J Dairy Sci. 1985;68:489–500.

    PubMed  CAS  Google Scholar 

  2. Juergens WG, Stockdale FE, Topper YJ, Elias JJ. Hormone-dependent differentiation of mammary gland in vitro. Proc Natl Acad Sci U S A. 1965;54:629–34.

    Article  PubMed  CAS  Google Scholar 

  3. Houdebine LM, Gaye P. Regulation of casein synthesis in the rabbit mammary gland. Titration of mRNA activity for casein under prolactin and progesterone treatments. Mol Cell Endocrinol. 1975;3:37–55.

    Article  PubMed  CAS  Google Scholar 

  4. Devinoy E, Houdebine LM. Effects of glucocorticoids on casein gene expression in the rabbit. Eur J Biochem. 1977;75:411–6.

    Article  PubMed  CAS  Google Scholar 

  5. Devinoy E, Houdebine LM, Delouis C. Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA. Biochim Biophys Acta. 1978;517:360–6.

    PubMed  CAS  Google Scholar 

  6. Rosen JM, O'Neal DL, McHugh JE, Comstock JP. Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry. 1978;17:290–7.

    Article  PubMed  CAS  Google Scholar 

  7. Matusik RJ, Rosen JM. Prolactin induction of casein mRNA in organ culture. A model system for studying peptide hormone regulation of gene expression. J Biol Chem. 1978;253:2343–7.

    PubMed  CAS  Google Scholar 

  8. Hall L, Craig RK, Campbell PN. mRNA species directing synthesis of milk proteins in normal and tumour tissue from human mammary gland. Nature. 1979;277:54–6.

    Article  PubMed  CAS  Google Scholar 

  9. Rosen JM, Wyszomierski SL, Hadsell D. Regulation of milk protein gene expression. Annu Rev Nutr. 1999;19:407–36.

    Article  PubMed  CAS  Google Scholar 

  10. Guyette WA, Matusik RJ, Rosen JM. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979;17:1013–23.

    Article  PubMed  CAS  Google Scholar 

  11. Teyssot B, Houdebine LM. Role of prolactin in the transcription of b-casein and 28-S ribosomal genes in the rabbit mammary gland. Eur J Biochem. 1980;110:263–72.

    Article  PubMed  CAS  Google Scholar 

  12. Teyssot B, Houdebine LM. Role of progesterone and glucocortocoids in the transcription of the b-casein and 28-S ribosomal genes in the rabbit mammary gland. Eur J Biochem. 1981;114:597–608.

    Article  PubMed  CAS  Google Scholar 

  13. Chomczynski P, Qasba P, Topper YJ. Essential role of insulin in transcription of the rat 25,000 molecular weight casein gene. Science. 1984;226:1326–8.

    Article  PubMed  CAS  Google Scholar 

  14. Chomczynski P, Qasba P, Topper YJ. Transcriptional and post-transcriptional roles of glucocorticoid in the expression of the rat 25,000 molecular weight casein gene. Biochem Biophys Res Commun. 1986;134:812–8.

    Article  PubMed  CAS  Google Scholar 

  15. Rosen JM, Rodgers JR, Couch CH, Bisbee CA, David-Inouye Y, Campbell SM, et al. Multihormonal regulation of milk protein gene expression. Ann NY Acad Sci. 1986;478:63–76.

    Article  PubMed  CAS  Google Scholar 

  16. Vina J, Puertes IR, Saez GT, Vina JR. Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Lett. 1981;126:250–2.

    Article  PubMed  CAS  Google Scholar 

  17. Stoecklin G, Anderson P. In a tight spot: ARE-mRNAs at processing bodies. Genes Dev. 2007;21:627–31.

    Article  PubMed  CAS  Google Scholar 

  18. Nagaoka K, Suzuki T, Kawano T, Imakawa K, Sakai S. Stability of casein mRNA is ensured by structural interactions between the 3′-untranslated region and poly(A) tail via the HuR and poly(A)-binding protein complex. Biochim Biophys Acta. 2006;1759:132–40.

    PubMed  CAS  Google Scholar 

  19. Nagaoka K, Tanaka T, Imakawa K, Sakai S. Involvement of RNA binding proteins AUF1 in mammary gland differentiation. Exp Cell Res. 2007;313:2937–45.

    Article  PubMed  CAS  Google Scholar 

  20. Poyet P, Henning SJ, Rosen JM. Hormone-dependent b-casein mRNA stabilization requires ongoing protein synthesis. Mol Endocrinol. 1989;3:1961–8.

    Article  PubMed  CAS  Google Scholar 

  21. Yoshimura M, Oka T. Hormonal induction of b-casein gene expression: requirement of ongoing protein synthesis for transcription. Endocrinology. 1990;126:427–33.

    Article  PubMed  CAS  Google Scholar 

  22. Travers MT, Barber MC, Tonner E, Quarrie L, Wilde CJ, Flint DJ. The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: relationships to milk synthesis and secretion. Endocrinology. 1996;137:1530–9.

    Article  PubMed  CAS  Google Scholar 

  23. Baruch A, Shani M, Barash I. Insulin and prolactin synergize to induce translation of human serum albumin in the mammary gland of transgenic mice. Transgenic Res. 1998;7:15–27.

    Article  PubMed  CAS  Google Scholar 

  24. Barash I. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent but wortmannin- and rapamycin-sensitive pathway. Mol Cell Endocrinol. 1999;155:37–49.

    Article  PubMed  CAS  Google Scholar 

  25. Schmidhauser C, Bissell MJ, Myers CA, Casperson GF. Extracellular matrix and hormones transcriptionally regulate bovine b-casein 5′ sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci USA. 1990;87:9118–22.

    Article  PubMed  CAS  Google Scholar 

  26. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989;105:223–35.

    PubMed  CAS  Google Scholar 

  27. Lin T, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266:653–6.

    Article  PubMed  CAS  Google Scholar 

  28. Pause A, Belsham GJ, Gingras A, Donze O, Lin T, Lawrence JC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7.

    Article  PubMed  CAS  Google Scholar 

  29. Choi KM, Barash I, Rhoads RE. Insulin and prolactin synergistically stimulate b-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation. Mol Endocrinol. 2004;18:1670–86.

    Article  PubMed  CAS  Google Scholar 

  30. Toerien CA, Cant JP. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows. J Dairy Sci. 2007;90:2726–34.

    Article  PubMed  CAS  Google Scholar 

  31. Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999;274:11647–52.

    Article  PubMed  CAS  Google Scholar 

  32. Griinari JM, McGuire MA, Dwyer DA, Bauman DE, Barbano DM, House WA. The role of insulin in the regulation of milk protein synthesis in dairy cows. J Dairy Sci. 1997;80:2361–71.

    PubMed  CAS  Google Scholar 

  33. Mackle TR, Dwyer DA, Bauman DE. Effects of branched-chain amino acids and sodium caseinate on milk protein concentration and yield from dairy cows. J Dairy Sci. 1999;82:161–71.

    Article  PubMed  CAS  Google Scholar 

  34. Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Lynch JM, Barbano DM, et al. Effects of insulin and amino acids on milk protein concentration and yield from dairy cows. J Dairy Sci. 1999;82:1512–24.

    PubMed  CAS  Google Scholar 

  35. Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Ross DA, Bauman DE. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. J Dairy Sci. 2000;83:93–105.

    PubMed  CAS  Google Scholar 

  36. Moshel Y, Rhoads RE, Barash I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J Cell Biochem. 2006;98:685–700.

    Article  PubMed  CAS  Google Scholar 

  37. Bevilacqua C, Helbling JC, Miranda G, Martin P. Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants. Reprod Nutr Dev. 2006;46:567–78.

    Article  PubMed  CAS  Google Scholar 

  38. Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000.

  39. Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell. 2005;122:875–86.

    Article  PubMed  CAS  Google Scholar 

  40. Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol. 1999;19:4552–60.

    PubMed  CAS  Google Scholar 

  41. Muhlrad D, Decker C, Parker R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol. 1995;15:2145–56.

    PubMed  CAS  Google Scholar 

  42. Chen CY, Xu N, Shyu AB. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol. 1995;15:5777–88.

    PubMed  CAS  Google Scholar 

  43. Caponigro G, Parker R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 1995;9:2421–32.

    Article  PubMed  CAS  Google Scholar 

  44. Huarte J, Stutz A, O'Connell ML, Gubler P, Belin D, Darrow AL, et al. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–30.

    Article  PubMed  CAS  Google Scholar 

  45. Sachs A, Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993;268:22955–8.

    PubMed  CAS  Google Scholar 

  46. Richter J, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–480.

    Article  PubMed  CAS  Google Scholar 

  47. Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 2004;18:48–61.

    Article  PubMed  CAS  Google Scholar 

  48. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos-mRNA. Nature. 2000;404:302–307.

    Article  PubMed  CAS  Google Scholar 

  49. Mendez R, Murthy EG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000;6:1253–9.

    Article  PubMed  CAS  Google Scholar 

  50. Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell. 2004;119:641–51.

    Article  PubMed  CAS  Google Scholar 

  51. Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell. 2006;24:173–83.

    Article  PubMed  CAS  Google Scholar 

  52. Dehlin E, Wormington M, Korner CG, Wahle E. Cap-dependent deadenylation of mRNA. EMBO J. 2000;19:1079–86.

    Article  PubMed  CAS  Google Scholar 

  53. Gao M, Fritz D, Ford L, Wilusz J. Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Mol Cell. 2000;5:479–88.

    Article  PubMed  CAS  Google Scholar 

  54. Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with eIF4E. Mol Cell. 1999;4:1017–27.

    Article  PubMed  CAS  Google Scholar 

  55. Jung M-Y, Lorenz L, Richter JD. Translational control by Neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006;26:4277–87.

    Article  PubMed  CAS  Google Scholar 

  56. Houdebine LM, Gaye P, Favre A. Lack of poly(A) sequence in half of the messenger RNA coding for ewe aS casein. Nucleic Acids Res. 1974;1:413–26.

    Article  PubMed  CAS  Google Scholar 

  57. Houdebine LM. Absence of poly (A) in a large part of newly synthesized casein mRNAs. FEBS Lett. 1976;66:110–3.

    Article  PubMed  CAS  Google Scholar 

  58. Rosen JM, Woo SL, Comstock JP. Regulation of casein messenger RNA during the development of the rat mammary gland. Biochemistry. 1975;14:2895–903.

    Article  PubMed  CAS  Google Scholar 

  59. Nadin-Davis S, Mezl VA. Distribution of rat alpha-lactalbumin and casein mRNA between polyadenylated and nonpolyadenylated RNA. Can J Biochem Cell Biol. 1983;61:353–62.

    Article  PubMed  CAS  Google Scholar 

  60. Hall L, Craig RK, Davies MS, Ralphs DN, Campbell PN. a-Lactalbumin is not a marker of human hormone-dependent breast cancer. Nature. 1981;290:602–4.

    Article  PubMed  CAS  Google Scholar 

  61. Nadin-Davis SA, Mezl VA. Variation in the lack of polyadenylation of the rat milk protein mRNAs during the lactation cycle. Int J Biochem. 1985;17:1067–75.

    Article  PubMed  CAS  Google Scholar 

  62. Kuraishi T, Sun Y, Aoki F, Imakawa K, Sakai S. The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk. Biochem J. 2000;347:579–83.

    Article  PubMed  CAS  Google Scholar 

  63. Kuraishi T, Mizoguchi Y, Sun Y, Aoki F, Imakawa K, Sakai S. The casein mRNA decay changes in parallel with the poly(A) tail length in the mouse mammary gland. Mol Cell Endocrinol. 2002;190:101–7.

    Article  PubMed  CAS  Google Scholar 

  64. Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006;172:803–8.

    Article  PubMed  CAS  Google Scholar 

  65. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007;8:9–22.

    Article  PubMed  CAS  Google Scholar 

  66. Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci. 2005;118:981–92.

    Article  PubMed  CAS  Google Scholar 

  67. Minshall N, Standart N. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res.. 2004;32:1325–34.

    Article  PubMed  CAS  Google Scholar 

  68. Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001;7:1717–27.

    Article  PubMed  CAS  Google Scholar 

  69. Fischer N, Weis K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 2002;21:2788–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. IS-3837-06 from the US–Israel Binational Agricultural Research and Development Fund and Grant No. 2 R01 GM020818 from the National Institute of General Medical Sciences (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Rhoads.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhoads, R.E., Grudzien-Nogalska, E. Translational Regulation of Milk Protein Synthesis at Secretory Activation. J Mammary Gland Biol Neoplasia 12, 283–292 (2007). https://doi.org/10.1007/s10911-007-9058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-007-9058-0

Keywords

Navigation