Skip to main content

Advertisement

Log in

Stemming Resistance to HER-2 Targeted Therapy

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Although the development of trastuzumab and lapatinib has improved the outlook for women with HER-2 positive breast cancer, resistance to HER-2 targeted therapy is a growing clinical dilemma. Recent evidence indicates that the HER-2 pathway may play an important role in the maintenance of cancer stem cells (CSCs). The success of HER-2 targeted therapies may, in part, be explained by their direct activity against HER-2 positive CSCs. Our understanding of the mechanisms involved in resistance to trastuzumab, including loss or blockade of the trastuzumab binding site, activation of alternative signaling pathways, and induction of epithelial–mesenchymal transition (EMT), suggests that CSCs may be at the root of resistance of HER-2 targeted therapy. A variety of novel HER-2 targeted approaches have demonstrated promising preliminary clinical activity. Future clinical trials should involve the integration of technologies to assess the impact of novel HER-2 targeted therapies on HER-2 positive CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADCC:

antibody dependent cellular cytotoxicity

ALDH1:

aldehyde dehydrogenase 1

ALTTO:

adjuvant lapatinib and/or trastuzumab treatment optimisation

c-Met:

mesenchymal-epithelial transition factor

CSC:

cancer stem cell

CXCR4:

CXC chemokine receptor 4

DCIS:

ductal carcinoma in situ

ECD:

extracellular domain

EGFR:

epidermal growth factor receptor

EMT:

epithelial-mesenchymal transition

ER:

estrogen receptor

Fc:

fragment C

FDA:

Food and Drug Administration

HER-2:

human epidermal growth factor receptor 2

HSP:

heat shock protein

IGF-1R:

insulin-like growth factor-1 receptor

MAPK:

mitogen-activated protein kinase

MFE:

mammosphere formation efficiency

mTOR:

mammalian target of rapamycin

PCDGF:

PC-cell derived growth factor

PI3K:

phosphoinositide 3-kinase

PP2A:

Protein phosphatase 2

PTEN:

phosphatase and tensin homolog

RT-PCR:

reverse transcriptase polymerase chain reaction

siRNA:

small interfering ribonucleic acid

VEGF:

vascular endothelial growth factor

VEGFR:

vascular endothelial growth factor receptor

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Abraham BK, Fritz P, Mcclellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005;11:1154–9.

    PubMed  CAS  Google Scholar 

  2. Aird KM, Ding X, Baras A, Wei J, Morse MA, Clay T, Lyerly HK, Devi GR, Aird KM, Ding X, Baras A, Wei J, Morse MA, Clay T, Lyerly HK, Devi GR. Trastuzumab signaling in ErbB2-overexpressing inflammatory breast cancer correlates with X-linked inhibitor of apoptosis protein expression. Molecular Cancer Therapeutics 2008;7:38–7.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  4. Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, Delisi C, Harris L, Barnard N, Martel M, Levine AJ, Ganesan S, Bhanot G. High expression of lymphocyte-associated genes in node-negative HER2 + breast cancers correlates with lower recurrence rates. Cancer Res 2007;67:10669–76.

    Article  PubMed  CAS  Google Scholar 

  5. Alkarain A, Slingerland J. Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 2004;6:13–21.

    Article  PubMed  CAS  Google Scholar 

  6. André F, Campone M, Hurvitz SA, Vittori L, Pylvaenaeinen I, Sahmoud T, O’regan RM (2008, Abstract # 1003) Multicenter phase I clinical trial of daily and weekly RAD001 in combination with weekly paclitaxel and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab. American Society of Clinical Oncology 2008 Annual Meeting.

  7. Arasada RR, Arteaga C. Identification of mechanisms of resistance to the HER2 tyrosine kinase inhibitor, Lapatinib, through a loss of function genetic screen. Proc Amer Assoc Cancer Res 2008, 123-.

  8. Asselin-Labat M-L, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, Visvader JE, Lindeman GJ. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 2006;98:1011–14.

    Article  PubMed  CAS  Google Scholar 

  9. Barok M, Isola J, Palyi-Krekk Z, Nagy P, Juhasz I, Vereb G, Kauraniemi P, Kapanen A, Tanner M, Vereb G, Szollosi J. Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 2007;6:2065–72.

    Article  PubMed  CAS  Google Scholar 

  10. Beeram M, Burris HA, Modi S, Birkner M, Girish S, Tibbitts J, Holden SN, Lutzker SG, Krop IE (2008, Abstract # 1028) A phase I study of trastuzumab-DM1 (T-DM1), a first-in-class HER2 antibody-drug conjugate (ADC), in patients (pts) with advanced HER2 + breast cancer (BC). American Society of Clinical Oncology 2008 Annual Meeting.

  11. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, Van de Vijver MJ, Bernards R. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer [see comment]. Cancer Cell 2007;12:395–402.

    Article  PubMed  CAS  Google Scholar 

  12. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat M-L, Oakes SR, Lindeman GJ, Visvader JE. Notch Signaling Regulates Mammary Stem Cell Function and Luminal Cell-Fate Commitment. Cell Stem Cell 2008;3:429–41.

    Article  PubMed  CAS  Google Scholar 

  13. Burstein H, Awada A, Badwe R, Dirix L, Tan A, Jacod S, Lustgarten S, Vermette J, Zacharchuk C (2007, Abstract # 6061) HKI-272, an irreversible pan erbB receptor tyrosine kinase inhibitor: preliminary phase 2 results in patients with advanced breast cancer. San Antonio Breast Cancer Symposium.

  14. Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Gruszfeld A, Kaufman B, Crown J, Chan A, Campone M, Viens P, Davidson N, Gorbounova V, Raats JI, Skarlos D, Newstat B, Roychowdhury D, Paoletti P, Oliva C, Rubin S, Stein S, Geyer CE. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat. 2008.

  15. Carney WP, Leitzel K, Ali S, Neumann R, Lipton A. HER-2/neu diagnostics in breast cancer. Breast Cancer Res 2007;9:207.

    Article  PubMed  CAS  Google Scholar 

  16. Chia S, Norris B, Speers C, Cheang M, Gilks B, Gown AM, Huntsman D, Olivotto IA, Nielsen TO, Gelmon K. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J Clin Oncol. 2008;JCO.2007.15.8659.

  17. Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, Clinton GM. NH2-terminally truncated HER-2/neu protein: Relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 1998;58:5123–9.

    PubMed  CAS  Google Scholar 

  18. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets [see comment]. Nat Med 2000;6:443–6.

    Article  PubMed  CAS  Google Scholar 

  19. Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res 2005;304:604–19.

    Article  PubMed  CAS  Google Scholar 

  20. Dontu G, Jackson KW, Mcnicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004;6:R605–15.

    Article  PubMed  CAS  Google Scholar 

  21. Dowsett M. Overexpression of HER-2 as a resistance mechanism to hormonal therapy for breast cancer. Endocrine-Related Cancer 2001;8:191–5.

    Article  PubMed  CAS  Google Scholar 

  22. Eichhorn PJA, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, Baselga J. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 2008;68:9221–30.

    Article  PubMed  CAS  Google Scholar 

  23. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, Cristofanilli M, Arun B, Esmaeli B, Fritsche HA, Sneige N, Smith TL, Hortobagyi GN. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002;20:1800–8.

    Article  PubMed  CAS  Google Scholar 

  24. Esteva FJ, Wang J, Lin F, Mejia JA, Yan K, Altundag K, Valero V, Buzdar AU, Hortobagyi GN, Symmans WF, Pusztai L. CD40 signaling predicts response to preoperative trastuzumab and concomitant paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide in HER-2-overexpressing breast cancer. Breast Cancer Res 2007;9:R87.

    Article  PubMed  Google Scholar 

  25. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008;26:2839–45.

    Article  PubMed  CAS  Google Scholar 

  26. Gelmon KA, Fumoleau P, Verma S, Wardley AM, Conte PF, Miles D, Gianni L, Mcnally VA, Ross G, Baselga J (2008, Abstract # 1026) Results of a phase II trial of trastuzumab (H) and pertuzumab (P) in patients (pts) with HER2-positive metastatic breast cancer (MBC) who had progressed during trastuzumab therapy. American Society of Clinical Oncology 2008 Annual Meeting.

  27. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, Castiglioni F, Villani L, Magalotti C, Gibelli N, Oliviero B, Ballardini B, Prada GD, Zambelli A, Costa A. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004;10:5650–55.

    Article  PubMed  CAS  Google Scholar 

  28. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. New Engl J Med 2006;355:2733–43.

    Article  PubMed  CAS  Google Scholar 

  29. Ghatak S, Misra S, Toole BP. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 2005;280:8875–83.

    PubMed  Google Scholar 

  30. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007;1:555–67.

    Article  PubMed  CAS  Google Scholar 

  31. Herbert B-S, Goldblatt E, Erickson P, Gentry E, Gryaznov S. The telomerase template antagonist GRN163L sensitizes resistant HER2-positive breast cancer cells to trastuzumab. Proc Amer Assoc Cancer Res. 2008;LB-229. http://aacrmeetingabstracts.org/misc/howtocite.dtl.

  32. Honeth G, Bendahl P-O, Ringnér M, Saal L, Gruvberger-Saal S, Lövgren K, Grabau D, Fernö M, Borg Å, Hegardt C. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008;10:R53.

    Article  PubMed  CAS  Google Scholar 

  33. Huang C, Gee J, Nicholson R, Osborne K, Schiff R. {alpha}6{beta}1 and {alpha}6{beta}4 integrins and their critical role in promoting resistance to multiple treatment strategies for breast cancer. Proc Amer Assoc Cancer Res. 2008;1974. http://aacrmeetingabstracts.org/misc/howtocite.dtl.

  34. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341–54.

    Article  PubMed  CAS  Google Scholar 

  35. Izumi Y, Xu L, Di Tomaso E, Fukumura D, Jain RK, Izumi Y, Xu L, Di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002;416:279–80.

    Article  PubMed  CAS  Google Scholar 

  36. Jerusalem GH, Dieras V, Cardoso F, Bergh J, Fasolo A, Rorive A, Manlius C, Pylvaenaeinen I, Sahmoud T, Gianni L (2008, Abstract # 1057) Multicenter phase I clinical trial of daily and weekly RAD001 in combination with vinorelbine and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab. American Society of Clinical Oncology 2008 Annual Meeting.

  37. Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 2008;26:2813–20.

    Article  PubMed  Google Scholar 

  38. Kim R, Tanabe K, Uchida Y, Osaki A, Toge T. The role of HER-2 oncoprotein in drug-sensitivity in breast cancer (review). Oncol Rep 2002;9:3–9.

    PubMed  CAS  Google Scholar 

  39. Kim WE, Serrero G. PC cell-derived growth factor stimulates proliferation and confers Trastuzumab resistance to Her-2-overexpressing breast cancer cells. Clin Cancer Res 2006;12:4192–9.

    Article  PubMed  CAS  Google Scholar 

  40. Klos KS, Zhou X, Lee S, Zhang L, Yang W, Nagata Y, Yu D. Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer 2003;98:1377–85.

    Article  PubMed  CAS  Google Scholar 

  41. Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008;27:6120–30.

    Article  PubMed  CAS  Google Scholar 

  42. Lane HA, Motoyama AB, Beuvink I, Hynes NE. Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Ann Oncol 2001;12(Suppl 1):S21–2.

    Article  PubMed  Google Scholar 

  43. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RVJ, Lutz RJ, Wong WLT, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008;68:9280–90.

    Article  PubMed  CAS  Google Scholar 

  44. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008;100:672–9.

    Article  PubMed  CAS  Google Scholar 

  45. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis.[see comment]. Cancer Cell 2004;6:459–69.

    Article  PubMed  CAS  Google Scholar 

  46. Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Molecular Cancer Therapeutics 2003;2:1113–20.

    PubMed  CAS  Google Scholar 

  47. Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 2008;105:1680–5.

    Article  PubMed  CAS  Google Scholar 

  48. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, Mills GB, Hortobagyi GN, Esteva FJ, Yu D. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency.[see comment]. Clin Cancer Res 2007;13:5883–8.

    Article  PubMed  CAS  Google Scholar 

  49. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M, Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin).[see comment]. J Natl Cancer Inst 2001;93:1852–7.

    Article  PubMed  CAS  Google Scholar 

  50. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704–15.

    Article  PubMed  CAS  Google Scholar 

  51. Marhaba R, Zoller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 2004;35:211–31.

    Article  PubMed  CAS  Google Scholar 

  52. Melchor L, Benitez J. An integrative hypothesis about the origin and development of sporadic and familial breast cancer subtypes. Carcinogenesis 2008;29:1475–82.

    Article  PubMed  CAS  Google Scholar 

  53. Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, Digiovanna MP, Wang C-X, Hilsenbeck SG, Osborne CK, Allred DC, Elledge R, Chang JC. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 2005;23:2460–68.

    Article  PubMed  CAS  Google Scholar 

  54. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. 2001;61:4744–4749.

  55. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, Maria Neri T, Ardizzoni A. . Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 2008;26:1789–96.

    Article  PubMed  CAS  Google Scholar 

  56. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients.[see comment]. Cancer Cell 2004;6:117–27.

    Article  PubMed  CAS  Google Scholar 

  57. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, Jovin TM. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 2005;65:473–82.

    PubMed  CAS  Google Scholar 

  58. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 2004;64:3981–6.

    Article  PubMed  CAS  Google Scholar 

  59. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005;65:11118–28.

    Article  PubMed  CAS  Google Scholar 

  60. Neve RM, Nielsen UB, Kirpotin DB, Poul M-A, Marks JD, Benz CC. Biological effects of anti-ErbB2 single chain antibodies selected for internalizing function. Biochem Biophys Res Commun 2001;280:274–79.

    Article  PubMed  CAS  Google Scholar 

  61. O’shaughnessy J, Blackwell KL, Burstein HS, A. M., SLEDGE, G., BASELGA, J., KOEHLER, M., LAABS, S. & FLORANCE, A. R., D. (2008, Abstract # 1015) A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2 + metastatic breast cancer progressing on trastuzumab therapy. American Society of Clinical Oncology 2008 Annual Meeting.

  62. Osipo C, Meeke K, Cheng D, Weichel A, Bertucci A, Liu H, Jordan VC, Osipo C, Meeke K, Cheng D, Weichel A, Bertucci A, Liu H, Jordan VC. Role for HER2/neu and HER3 in fulvestrant-resistant breast cancer. Int J Oncol 2007;30:509–20.

    PubMed  CAS  Google Scholar 

  63. Ostler J, Jones S, Zhao W, Yearsley K, Ye Y, Barsky S. Resistance to Her-2/neu targeting in human breast cancer may be mediated by epithelial-mesenchymal transition. Proc Amer Assoc Cancer Res. 2008, 127. http://aacrmeetingabstracts.org/misc/howtocite.dtl.

  64. Palyi-Krekk Z, Barok M, Isola J, Tammi M, Szollosi J, Nagy P. Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 2007;43:2423–33.

    Article  PubMed  CAS  Google Scholar 

  65. Perou CM, Sorlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale A-L, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  66. Phillips TM, Mcbride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006;98:1777–85.

    PubMed  Google Scholar 

  67. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang C-S, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, Mcfadden E, Dolci MS, Gelber RD, The Herceptin Adjuvant Trial Study T. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. New Engl J Med 2005;353:1659–72.

    Article  PubMed  CAS  Google Scholar 

  68. Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E, Reich MF, Shen R, Shi X, Tsou H-R, Wang Y-F, Wissner A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 2004;64:3958–65.

    Article  PubMed  Google Scholar 

  69. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg A, Parsons R. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma [see comment]. Cancer Res 2005;65:2554–9.

    Article  PubMed  CAS  Google Scholar 

  70. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon Y Cajal S, Arribas J, Baselga J. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 2007;99:628–38.

    Article  PubMed  CAS  Google Scholar 

  71. Shackleford T, Korapati A, Le XF, Kute T, Rassidakis G. (2007) JAB1 confers resistance to trastuzumab by inhibition of p27. AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics

  72. Shattuck DL, Miller JK, Carraway KL, Sweeney C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 2008;68:1471–7.

    Article  PubMed  CAS  Google Scholar 

  73. Sheridan C, Kishimoto H, Fuchs R, Mehrotra S, Bhat-Nakshatri P, Turner C, Goulet R, Badve S, Nakshatri H. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006;8:R59.

    Article  PubMed  CAS  Google Scholar 

  74. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007;11:259–73.

    Article  PubMed  CAS  Google Scholar 

  75. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.

    Article  PubMed  CAS  Google Scholar 

  76. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New Engl J Med 2001;344:783–92.

    Article  PubMed  CAS  Google Scholar 

  77. Spector N. Treatment of metastatic ErbB2-positive breast cancer: options after progression on trastuzumab. Clin Breast Cancer 2008;8(Suppl 3):S94–9.

    PubMed  Google Scholar 

  78. Tagliabue E, Magnifico A, Albano L, Delia D, Gasparini P, Sozzi G, Menard S, Campaner S. Trastuzumab targets tumor-initiating cells of HER2-positive tumors. Proc Amer Assoc Cancer Res, 2008, 4605. http://aacrmeetingabstracts.org/misc/howtocite.dtl.

  79. Thoms J, Sabri S, Lesniak D, Lai R, Deschennes J, Mackey J, Murray D, Abdulkarim B. 2007, Abstract # 2023) Increased b1 integrin expression is a predictor of trastuzumab resistance in HER-2 overexpressing metastatic breast cancer patients. San Antonio Breast Cancer Symposium.

  80. Tripathy D, Mukhopadhyay P, Verma U, Mukhopadhyay C, Shelton J, Story M, Ding L. Abstract # 306) Targeting of the chemokine receptor CXCR4 in acquired trastuzumab resistance. San Antonio Breast Cancer Symposium. 2007.

  81. Von Minckwitz G, Zielinski C, Maarteense E, Vogel P, Schmidt M, Eidtmann H, et al. Capecitabine vs. capecitabine + trastuzumab in patients with HER2-positive metastatic breast cancer progressing during trastuzumab treatment: The TBP phase III study (GBG 26/BIG 3-05). In: American Society of Clinical Oncology 2008 Annual Meeting; 2008, Abstract # 1025.

  82. Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 2007;7:389–97.

    Article  PubMed  CAS  Google Scholar 

  83. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008;68:7711–7.

    Article  PubMed  CAS  Google Scholar 

  84. Wen XF, Yang G, Mao W, Thornton A, Liu J, Bast RC , Le XF. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 2006;25:6986–96.

    Article  PubMed  CAS  Google Scholar 

  85. Xia W, Bisi J, Strum J, Liu L, Carrick K, Graham KM, Treece AL, Hardwicke MA, Dush M, Liao Q, Westlund RE, Zhao S, Bacus S, Spector NL. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res 2006;66:1640–7.

    PubMed  Google Scholar 

  86. Xia W, Husain I, Liu L, Bacus S, Saini S, Spohn J, Pry K, Westlund R, Stein SH, Spector NL. Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Res 2007;67:1170–5.

    Article  PubMed  CAS  Google Scholar 

  87. Xia W, Liu LH, Ho P, Spector NL. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene 2004;23:646–53.

    Article  PubMed  CAS  Google Scholar 

  88. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008;14:818–29.

    Article  PubMed  CAS  Google Scholar 

  89. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131:1109–23.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, Medina D, Tsimelzon A, Hilsenbeck S, Green JE, Michalowska AM, Rosen JM. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008;68:4674–82.

    Article  PubMed  CAS  Google Scholar 

  91. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E 3rd, Zhang Y. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 2007;104:16158–63.

    Article  PubMed  CAS  Google Scholar 

  92. Holden SN, Beeram M, Krop IE, Burris HA, Birkner M, Girish S, et al. A phase I study of weekly dosing of trastuzumab-DM1 (T-CM1) in patients (pts) with advanced HER2+ breast cancer (BC). In: American Society of Clinical Oncology 2008 Annual Meeting; 2008, Abstract # 1029; 2008, Abstract #1029.

  93. Modi S, Sugarman S, Stopeck A, Linden H, Ma W, Kersey K, et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + transtuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC). In: American Society of Clinical Oncology 2008 Annual Meeting; 2008, Abstract # 1027; 2008, Abstract # 1027.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine J. Piccart-Gebhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedard, P.L., Cardoso, F. & Piccart-Gebhart, M.J. Stemming Resistance to HER-2 Targeted Therapy. J Mammary Gland Biol Neoplasia 14, 55–66 (2009). https://doi.org/10.1007/s10911-009-9116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9116-x

Keywords

Navigation