Skip to main content

Advertisement

Log in

Extracellular Matrix Composition Reveals Complex and Dynamic Stromal-Epithelial Interactions in the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland’s unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

collagen IV:

type IV collagen

DDR1:

discoidin domain receptor 1

EM:

electron microscopy

EGFR:

epidermal growth factor receptor

ECM:

extracellular matrix

ED:

extra domain

FACIT:

fibril associated collagens with interrupted triple helices

FGF:

fibroblast growth factor

FN:

fibronectin

GAG:

glycosaminoglycan

H&E:

hematoxylin and eosin stain

HGF:

hepatocyte growth factor

LN:

laminin

LAP:

latency-associated peptide

LRR:

leucine-rich repeats

LOX:

lysyl oxidase

MMP:

matrix metalloproteinase

MAGP:

microfibril-associated glycoprotein

MCP-1:

monocyte chemoattractant protein-1

SPARC:

secreted protein acidic and rich in cysteine

SLRP:

small leucine-rich proteoglycan

SD:

Sprague Dawley

TN:

tenascin

tTG2:

tissue transglutaminase 2

TGF-β:

transforming growth factor β

TLR:

toll like receptor

References

  1. Schedin P, Mitrenga T, Kaeck M. Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in the Sprague-Dawley rat: a model for investigating the role of estrous cycling in mammary carcinogenesis. J Mammary Gland Biol Neoplasia. 2000;5(2):211–25.

    Article  PubMed  CAS  Google Scholar 

  2. Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.

    Article  PubMed  CAS  Google Scholar 

  3. Ferguson DJ, Anderson TJ. Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br J Cancer. 1981;44(2):177–81.

    PubMed  CAS  Google Scholar 

  4. Ferguson JE, Schor AM, Howell A, Ferguson MW. Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tissue Res. 1992;268(1):167–77.

    Article  PubMed  CAS  Google Scholar 

  5. Robinson GW, McKnight RA, Smith GH, Hennighausen L. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development. 1995;121(7):2079–90.

    PubMed  CAS  Google Scholar 

  6. Bissell MJ, Barcellos-Hoff MH. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl. 1987;8:327–43.

    PubMed  CAS  Google Scholar 

  7. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.

    Article  PubMed  CAS  Google Scholar 

  8. Vogel WF, Aszodi A, Alves F, Pawson T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol. 2001;21(8):2906–17.

    Article  PubMed  CAS  Google Scholar 

  9. Scheele S, Falk M, Franzen A, Ellin F, Ferletta M, Lonai P, et al. Laminin alpha1 globular domains 4–5 induce fetal development but are not vital for embryonic basement membrane assembly. Proc Natl Acad Sci USA. 2005;102(5):1502–6.

    Article  PubMed  CAS  Google Scholar 

  10. Midwood KS, Valenick LV, Hsia HC, Schwarzbauer JE. Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. Mol Biol Cell. 2004;15(12):5670–7.

    Article  PubMed  CAS  Google Scholar 

  11. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11(4):288–300.

  12. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215.

    Article  PubMed  CAS  Google Scholar 

  13. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9-22.

  14. Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol. 2006;18(5):463–71.

    Article  PubMed  CAS  Google Scholar 

  15. Ekblom P, Lonai P, Talts JF. Expression and biological role of laminin-1. Matrix Biol. 2003;22(1):35–47.

    Article  PubMed  CAS  Google Scholar 

  16. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.

    Article  PubMed  CAS  Google Scholar 

  17. Jalkanen M, Rapraeger A, Bernfield M. Mouse mammary epithelial cells produce basement membrane and cell surface heparan sulfate proteoglycans containing distinct core proteins. J Cell Biol. 1988;106(3):953–62.

    Article  PubMed  CAS  Google Scholar 

  18. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99(1):31–68.

    Article  PubMed  CAS  Google Scholar 

  19. Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM. A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia. 2000;5(2):165–85.

    Article  PubMed  CAS  Google Scholar 

  20. Silberstein GB, Daniel CW. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol. 1982;90(1):215–22.

    Article  PubMed  CAS  Google Scholar 

  21. Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA. 1995;92(9):3650–7.

    Article  PubMed  CAS  Google Scholar 

  22. Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR, et al. Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res. 2009;11(1):R5.

    Article  PubMed  CAS  Google Scholar 

  23. Schedin P, Mitrenga T, McDaniel S, Kaeck M. Mammary ECM composition and function are altered by reproductive state. Mol Carcinog. 2004;41(4):207–20.

    Article  PubMed  CAS  Google Scholar 

  24. Woodward TL, Mienaltowski AS, Modi RR, Bennett JM, Haslam SZ. Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology. 2001;142(7):3214–22.

    Article  PubMed  CAS  Google Scholar 

  25. DeMali KA, Wennerberg K, Burridge K. Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol. 2003;15(5):572–82.

    Article  PubMed  CAS  Google Scholar 

  26. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.

    Article  PubMed  CAS  Google Scholar 

  27. Provenzano PP, Inman DR, Eliceiri KW, Keely PJ. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene. 2009;28(49):4326–43.

    Article  PubMed  CAS  Google Scholar 

  28. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.

    Article  PubMed  CAS  Google Scholar 

  29. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  PubMed  CAS  Google Scholar 

  30. Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, et al. Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol. 2008;10(6):716–22.

    Article  PubMed  CAS  Google Scholar 

  31. Mecham RP, Heuser JE. The elastic fiber. In: Hay ED (ed). Cell Biology of Extracellular Matrix: Plenum 1991; p. 79–109.

  32. Linsenmayer TF. Collagen. In: Hay ED, editor. Cell biology of extracellular matrix. NY: Plenum; 1991. p. 7–44.

    Google Scholar 

  33. Szauter KM, Cao T, Boyd CD, Csiszar K. Lysyl oxidase in development, aging and pathologies of the skin. Pathol Biol (Paris). 2005;53(7):448–56.

    CAS  Google Scholar 

  34. Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol. 2003;4(2):140–56.

    Article  PubMed  CAS  Google Scholar 

  35. Nunes I, Gleizes PE, Metz CN, Rifkin DB. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol. 1997;136(5):1151–63.

    Article  PubMed  CAS  Google Scholar 

  36. Williams JM, Daniel CW. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol. 1983;97(2):274–90.

    Article  PubMed  CAS  Google Scholar 

  37. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6(1):1–11.

    PubMed  CAS  Google Scholar 

  38. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.

    Article  PubMed  CAS  Google Scholar 

  39. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  PubMed  CAS  Google Scholar 

  40. Taipale J, Miyazono K, Heldin CH, Keski-Oja J. Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol. 1994;124(1–2):171–81.

    Article  PubMed  CAS  Google Scholar 

  41. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14(2):163–76.

    PubMed  Google Scholar 

  42. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.

    Article  PubMed  CAS  Google Scholar 

  43. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–23.

    Article  PubMed  CAS  Google Scholar 

  44. Sawhney RK, Howard J. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J Cell Biol. 2002;157(6):1083–91.

    Article  PubMed  CAS  Google Scholar 

  45. Harris AK, Stopak D, Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981;290(5803):249–51.

    Article  PubMed  CAS  Google Scholar 

  46. Silberstein GB, Strickland P, Coleman S, Daniel CW. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol. 1990;110(6):2209–19.

    Article  PubMed  CAS  Google Scholar 

  47. Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989;135(1):20–30.

    Article  PubMed  CAS  Google Scholar 

  48. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development. 1991;113(3):867–78.

    PubMed  CAS  Google Scholar 

  49. Pierce Jr DF, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Genes Dev. 1993;7(12A):2308–17.

    Article  PubMed  CAS  Google Scholar 

  50. Robinson SD, Roberts AB, Daniel CW. TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol. 1993;120(1):245–51.

    Article  PubMed  CAS  Google Scholar 

  51. Wu WJ, Lee CF, Hsin CH, Du JY, Hsu TC, Lin TH, et al. TGF-beta inhibits prolactin-induced expression of beta-casein by a Smad3-dependent mechanism. J Cell Biochem. 2008;104(5):1647–59.

    Article  PubMed  CAS  Google Scholar 

  52. Schedin P, O’Brien J, Rudolph M, Stein T, Borges V. Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia. 2007;12(1):71–82.

    Article  PubMed  Google Scholar 

  53. Faure E, Heisterkamp N, Groffen J, Kaartinen V. Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res. 2000;300(1):89–95.

    PubMed  CAS  Google Scholar 

  54. Kim ES, Sohn YW, Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett. 2007;252(1):147–56.

    Article  PubMed  CAS  Google Scholar 

  55. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21(1):49–59.

  56. Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40(6–7):1101–10.

    Article  PubMed  CAS  Google Scholar 

  57. Schenk S, Quaranta V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 2003;13(7):366–75.

    Article  PubMed  CAS  Google Scholar 

  58. Schedin P, Strange R, Mitrenga T, Wolfe P, Kaeck M. Fibronectin fragments induce MMP activity in mouse mammary epithelial cells: evidence for a role in mammary tissue remodeling. J Cell Sci. 2000;113(Pt 5):795–806.

    PubMed  CAS  Google Scholar 

  59. Williams CM, Engler AJ, Slone RD, Galante LL, Schwarzbauer JE. Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Res. 2008;68(9):3185–92.

    Article  PubMed  CAS  Google Scholar 

  60. Friedland JC, Lee MH, Boettiger D. Mechanically activated integrin switch controls alpha5beta1 function. Science. 2009;323(5914):642–4.

    Article  PubMed  CAS  Google Scholar 

  61. Liang X, Huuskonen J, Hajivandi M, Manzanedo R, Predki P, Amshey JR, et al. Identification and quantification of proteins differentially secreted by a pair of normal and malignant breast-cancer cell lines. Proteomics. 2009;9(1):182–93.

    Article  PubMed  CAS  Google Scholar 

  62. Hansen KC, Kiemele L, Maller O, O’Brien J, Shankar A, Fornetti J, et al. An in-solution ultrasonication-assisted digestion method for improved extracellular matrix proteome coverage. Mol Cell Proteomics. 2009;8(7):1648–57.

    Article  PubMed  CAS  Google Scholar 

  63. Farquhar MG. The glomerular basement membrane: A selective macromolecular fliter. In: Hay ED, editor. Cell biology extracellular matrix. NY: Plenum; 1991.

    Google Scholar 

  64. Li S, Edgar D, Fassler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell. 2003;4(5):613–24.

    Article  PubMed  CAS  Google Scholar 

  65. Tzu J, Marinkovich MP. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol. 2008;40(2):199–214.

    Article  PubMed  CAS  Google Scholar 

  66. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005;85(3):979–1000.

    Article  PubMed  CAS  Google Scholar 

  67. Francoeur C, Escaffit F, Vachon PH, Beaulieu JF. Proinflammatory cytokines TNF-alpha and IFN-gamma alter laminin expression under an apoptosis-independent mechanism in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G592–8.

    Article  PubMed  CAS  Google Scholar 

  68. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378–86.

    Article  PubMed  CAS  Google Scholar 

  69. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin–a glycoprotein from basement membranes. J Biol Chem. 1979;254(19):9933–7.

    PubMed  CAS  Google Scholar 

  70. Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004;131(10):2247–56.

    Article  PubMed  CAS  Google Scholar 

  71. Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, et al. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol. 1999;144(1):151–60.

    Article  PubMed  CAS  Google Scholar 

  72. Hohenester E, Tisi D, Talts JF, Timpl R. The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol Cell. 1999;4(5):783–92.

    Article  PubMed  CAS  Google Scholar 

  73. Streuli CH, Bailey N, Bissell MJ. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol. 1991;115(5):1383–95.

    Article  PubMed  CAS  Google Scholar 

  74. Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci USA. 1987;84(1):136–40.

    Article  PubMed  CAS  Google Scholar 

  75. Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol. 2005;70:343–56.

    Article  PubMed  CAS  Google Scholar 

  76. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115(Pt 1):39–50.

    PubMed  CAS  Google Scholar 

  77. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30(3):256–68.

    Article  PubMed  CAS  Google Scholar 

  78. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA. 1992;89(19):9064–8.

    Article  PubMed  CAS  Google Scholar 

  79. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007;7(5):370–80.

    Article  PubMed  CAS  Google Scholar 

  80. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell. 2008;14(4):570–81.

    Article  PubMed  CAS  Google Scholar 

  81. Schenk S, Hintermann E, Bilban M, Koshikawa N, Hojilla C, Khokha R, et al. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J Cell Biol. 2003;161(1):197–209.

    Article  PubMed  CAS  Google Scholar 

  82. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277(5323):225–8.

    Article  PubMed  CAS  Google Scholar 

  83. Yurchenco PD, Ruben GC. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol. 1987;105(6 Pt 1):2559–68.

    Article  PubMed  CAS  Google Scholar 

  84. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131(7):1619–28.

    Article  PubMed  CAS  Google Scholar 

  85. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. Faseb J. 1990;4(6):1577–90.

    PubMed  CAS  Google Scholar 

  86. Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest. 1997;99(10):2470–8.

    Article  PubMed  CAS  Google Scholar 

  87. Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008;71(5):357–70.

    Article  PubMed  CAS  Google Scholar 

  88. Wicha MS, Liotta LA, Vonderhaar BK, Kidwell WR. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol. 1980;80(2):253–6.

    Article  PubMed  CAS  Google Scholar 

  89. Wicha MS, Liotta LA, Garbisa S, Kidwell WR. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp Cell Res. 1979;124(1):181–90.

    Article  PubMed  CAS  Google Scholar 

  90. Marneros AG, Olsen BR. The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol. 2001;20(5–6):337–45.

    Article  PubMed  CAS  Google Scholar 

  91. Mundel TM, Kalluri R. Type IV collagen-derived angiogenesis inhibitors. Microvasc Res. 2007;74(2–3):85–9.

    Article  PubMed  CAS  Google Scholar 

  92. Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech. 2001;52(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  93. Nischt R, Schmidt C, Mirancea N, Baranowsky A, Mokkapati S, Smyth N, et al. Lack of nidogen-1 and -2 prevents basement membrane assembly in skin-organotypic coculture. J Invest Dermatol. 2007;127(3):545–54.

    Article  PubMed  CAS  Google Scholar 

  94. Bose K, Nischt R, Page A, Bader BL, Paulsson M, Smyth N. Loss of nidogen-1 and -2 results in syndactyly and changes in limb development. J Biol Chem. 2006;281(51):39620–9.

    Article  PubMed  CAS  Google Scholar 

  95. Kohling R, Nischt R, Vasudevan A, Ho M, Weiergraber M, Schneider T, et al. Nidogen and nidogen-associated basement membrane proteins and neuronal plasticity. Neurodegener Dis. 2006;3(1–2):56–61.

    PubMed  Google Scholar 

  96. Ekblom P, Ekblom M, Fecker L, Klein G, Zhang HY, Kadoya Y, et al. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development. 1994;120(7):2003–14.

    PubMed  CAS  Google Scholar 

  97. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. Embo J. 1991;10(11):3137–46.

    PubMed  CAS  Google Scholar 

  98. Mayer U, Nischt R, Poschl E, Mann K, Fukuda K, Gerl M, et al. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. Embo J. 1993;12(5):1879–85.

    PubMed  CAS  Google Scholar 

  99. Reinhardt D, Mann K, Nischt R, Fox JW, Chu ML, Krieg T, et al. Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J Biol Chem. 1993;268(15):10881–7.

    PubMed  CAS  Google Scholar 

  100. Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol. 2000;20(18):7007–12.

    Article  PubMed  CAS  Google Scholar 

  101. Miosge N, Sasaki T, Timpl R. Evidence of nidogen-2 compensation for nidogen-1 deficiency in transgenic mice. Matrix Biol. 2002;21(7):611–21.

    Article  PubMed  CAS  Google Scholar 

  102. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol. 2005;25(15):6846–56.

    Article  PubMed  CAS  Google Scholar 

  103. Pujuguet P, Simian M, Liaw J, Timpl R, Werb Z, Bissell MJ. Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression. J Cell Sci. 2000;113(Pt 5):849–58.

    PubMed  CAS  Google Scholar 

  104. Friedrich MV, Gohring W, Morgelin M, Brancaccio A, David G, Timpl R. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J Mol Biol. 1999;294(1):259–70.

    Article  PubMed  CAS  Google Scholar 

  105. Handler M, Yurchenco PD, Iozzo RV. Developmental expression of perlecan during murine embryogenesis. Dev Dyn. 1997;210(2):130–45.

    Article  PubMed  CAS  Google Scholar 

  106. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, et al. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol. 1999;147(5):1109–22.

    Article  PubMed  CAS  Google Scholar 

  107. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y. Perlecan is essential for cartilage and cephalic development. Nat Genet. 1999;23(3):354–8.

    Article  PubMed  CAS  Google Scholar 

  108. Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, et al. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol. 2004;166(1):97–109.

    Article  PubMed  CAS  Google Scholar 

  109. Smith SM, West LA, Govindraj P, Zhang X, Ornitz DM, Hassell JR. Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. Matrix Biol. 2007;26(3):175–84.

    Article  PubMed  CAS  Google Scholar 

  110. Datta S, Pierce M, Datta MW. Perlecan signaling: helping hedgehog stimulate prostate cancer growth. Int J Biochem Cell Biol. 2006;38(11):1855–61.

    Article  PubMed  CAS  Google Scholar 

  111. Gelse K, Poschl E, Aigner T. Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46.

    Article  PubMed  CAS  Google Scholar 

  112. Church RL, Pfeiffer SE, Tanzer ML. Collagen biosynthesis: synthesis and secretion of a high molecular weight collagen precursor (procollagen). Proc Natl Acad Sci USA. 1971;68(11):2638–42.

    Article  PubMed  CAS  Google Scholar 

  113. Berdichevsky F, Alford D, D’Souza B, Taylor-Papadimitriou J. Branching morphogenesis of human mammary epithelial cells in collagen gels. J Cell Sci. 1994;107(Pt 12):3557–68.

    PubMed  CAS  Google Scholar 

  114. Krause S, Maffini MV, Soto AM, Sonnenschein C. A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng Part C Methods. 2008;14(3):261–71.

    Article  PubMed  CAS  Google Scholar 

  115. Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM. The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol. 2002;161(1):337–44.

    PubMed  CAS  Google Scholar 

  116. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  PubMed  CAS  Google Scholar 

  117. McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W, et al. Remodeling of the Mammary Microenvironment after Lactation Promotes Breast Tumor Cell Metastasis. Am J Pathol 2006;168(2).

  118. O’Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, Hines L, et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am J Pathol. 2010;176(3):1241–55.

    Article  PubMed  CAS  Google Scholar 

  119. Ferreira AM, Takagawa S, Fresco R, Zhu X, Varga J, DiPietro LA. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. J Invest Dermatol. 2006;126(8):1900–8.

    Article  PubMed  CAS  Google Scholar 

  120. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993;119(4):1079–91.

    PubMed  CAS  Google Scholar 

  121. Yamada KM. Fibronectin and other cell interactive glycoproteins. In: Hay ED, editor. Cell biology of extracellular matrix. NY: Plenum; 1991. p. 111–46.

    Google Scholar 

  122. Blaustein M, Pelisch F, Coso OA, Bissell MJ, Kornblihtt AR, Srebrow A. Mammary epithelial-mesenchymal interaction regulates fibronectin alternative splicing via phosphatidylinositol 3-kinase. J Biol Chem. 2004;279(20):21029–37.

    Article  PubMed  CAS  Google Scholar 

  123. George J, Wang SS, Sevcsik AM, Sanicola M, Cate RL, Koteliansky VE, et al. Transforming growth factor-beta initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform. Am J Pathol. 2000;156(1):115–24.

    PubMed  CAS  Google Scholar 

  124. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423(6942):876–81.

    Article  PubMed  CAS  Google Scholar 

  125. Jones PL, Jones FS. Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol. 2000;19(7):581–96.

    Article  PubMed  CAS  Google Scholar 

  126. Pas J, Wyszko E, Rolle K, Rychlewski L, Nowak S, Zukiel R, et al. Analysis of structure and function of tenascin-C. Int J Biochem Cell Biol. 2006;38(9):1594–602.

    Article  PubMed  CAS  Google Scholar 

  127. Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, Chiquet M. Tenascin interferes with fibronectin action. Cell. 1988;53(3):383–90.

    Article  PubMed  CAS  Google Scholar 

  128. Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res. 2001;61(23):8586–94.

    PubMed  CAS  Google Scholar 

  129. Wehrle-Haller B, Chiquet M. Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration. J Cell Sci. 1993;106(Pt 2):597–610.

    PubMed  CAS  Google Scholar 

  130. Saga Y, Yagi T, Ikawa Y, Sakakura T, Aizawa S. Mice develop normally without tenascin. Genes Dev. 1992;6(10):1821–31.

    Article  PubMed  CAS  Google Scholar 

  131. Fukamauchi F, Mataga N, Wang YJ, Sato S, Yoshiki A, Kusakabe M. Tyrosine hydroxylase activity and its mRNA level in dopaminergic neurons of tenascin gene knockout mouse. Biochem Biophys Res Commun. 1997;231(2):356–9.

    Article  PubMed  CAS  Google Scholar 

  132. Fukamauchi F, Mataga N, Wang YJ, Sato S, Youshiki A, Kusakabe M. Abnormal behavior and neurotransmissions of tenascin gene knockout mouse. Biochem Biophys Res Commun. 1996;221(1):151–6.

    Article  PubMed  CAS  Google Scholar 

  133. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200(4):488–99.

    Article  PubMed  CAS  Google Scholar 

  134. Latijnhouwers M, Bergers M, Ponec M, Dijkman H, Andriessen M, Schalkwijk J. Human epidermal keratinocytes are a source of tenascin-C during wound healing. J Invest Dermatol. 1997;108(5):776–83.

    Article  PubMed  CAS  Google Scholar 

  135. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986;47(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  136. Jones PL, Boudreau N, Myers CA, Erickson HP, Bissell MJ. Tenascin-C inhibits extracellular matrix-dependent gene expression in mammary epithelial cells. Localization of active regions using recombinant tenascin fragments. J Cell Sci. 1995;108(Pt 2):519–27.

    PubMed  CAS  Google Scholar 

  137. Kalembey I, Yoshida T, Iriyama K, Sakakura T. Analysis of tenascin mRNA expression in the murine mammary gland from embryogenesis to carcinogenesis: an in situ hybridization study. Int J Dev Biol. 1997;41(4):569–73.

    PubMed  CAS  Google Scholar 

  138. Koukoulis GK, Gould VE, Bhattacharyya A, Gould JE, Howeedy AA, Virtanen I. Tenascin in normal, reactive, hyperplastic, and neoplastic tissues: biologic and pathologic implications. Hum Pathol. 1991;22(7):636–43.

    Article  PubMed  CAS  Google Scholar 

  139. Bristow J, Tee MK, Gitelman SE, Mellon SH, Miller WL. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J Cell Biol. 1993;122(1):265–78.

    Article  PubMed  CAS  Google Scholar 

  140. Burch GH, Gong Y, Liu W, Dettman RW, Curry CJ, Smith L, et al. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet. 1997;17(1):104–8.

    Article  PubMed  CAS  Google Scholar 

  141. Wong SY, Crowley D, Bronson RT, Hynes RO. Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clin Exp Metastasis. 2008;25(2):109–18.

    Article  PubMed  CAS  Google Scholar 

  142. Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 2001;19(8):816–27.

    Article  PubMed  CAS  Google Scholar 

  143. Hohenester E, Engel J. Domain structure and organisation in extracellular matrix proteins. Matrix Biol. 2002;21(2):115–28.

    Article  PubMed  CAS  Google Scholar 

  144. Bradshaw AD, Puolakkainen P, Dasgupta J, Davidson JM, Wight TN. Helene Sage E. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength J Invest Dermatol. 2003;120(6):949–55.

    CAS  Google Scholar 

  145. Sweetwyne MT, Brekken RA, Workman G, Bradshaw AD, Carbon J, Siadak AW, et al. Functional analysis of the matricellular protein SPARC with novel monoclonal antibodies. J Histochem Cytochem. 2004;52(6):723–33.

    Article  PubMed  CAS  Google Scholar 

  146. Barker TH, Baneyx G, Cardo-Vila M, Workman GA, Weaver M, Menon PM, et al. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem. 2005;280(43):36483–93.

    Article  PubMed  CAS  Google Scholar 

  147. Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283(31):21305–9.

    Article  PubMed  CAS  Google Scholar 

  148. Wight TN, Heinegard DK, Hascall VC. Proteoglycans Structure and Function. In: Hay ED (ed). Cell Biology of Extracellular Matrix, 1991, p. 45–78.

  149. Coppock DL, Kopman C, Scandalis S, Gilleran S. Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ. 1993;4(6):483–93.

    PubMed  CAS  Google Scholar 

  150. Minor K, Tang X, Kahrilas G, Archibald SJ, Davies JE, Davies SJ. Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons. Neurobiol Dis. 2008;32(1):88–95.

    Article  PubMed  CAS  Google Scholar 

  151. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136(3):729–43.

    Article  PubMed  CAS  Google Scholar 

  152. Reed CC, Waterhouse A, Kirby S, Kay P, Owens RT, McQuillan DJ, et al. Decorin prevents metastatic spreading of breast cancer. Oncogene. 2005;24(6):1104–10.

    Article  PubMed  CAS  Google Scholar 

  153. Zhu JX, Goldoni S, Bix G, Owens RT, McQuillan DJ, Reed CC, et al. Decorin evokes protracted internalization and degradation of the epidermal growth factor receptor via caveolar endocytosis. J Biol Chem. 2005;280(37):32468–79.

    Article  PubMed  CAS  Google Scholar 

  154. Grant DS, Yenisey C, Rose RW, Tootell M, Santra M, Iozzo RV. Decorin suppresses tumor cell-mediated angiogenesis. Oncogene. 2002;21(31):4765–77.

    Article  PubMed  CAS  Google Scholar 

  155. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990;346(6281):281–4.

    Article  PubMed  CAS  Google Scholar 

  156. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet. 1998;20(1):78–82.

    Article  PubMed  CAS  Google Scholar 

  157. Fust A, LeBellego F, Iozzo RV, Roughley PJ, Ludwig MS. Alterations in lung mechanics in decorin-deficient mice. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L159–66.

    Article  PubMed  CAS  Google Scholar 

  158. Schaefer L, Mihalik D, Babelova A, Krzyzankova M, Grone HJ, Iozzo RV, et al. Regulation of fibrillin-1 by biglycan and decorin is important for tissue preservation in the kidney during pressure-induced injury. Am J Pathol. 2004;165(2):383–96.

    PubMed  CAS  Google Scholar 

  159. Salgado RM, Favaro RR, Martin SS, Zorn TM. The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues. Anat Rec (Hoboken). 2009;292(1):138–53.

    CAS  Google Scholar 

  160. San Martin S, Soto-Suazo M, De Oliveira SF, Aplin JD, Abrahamsohn P, Zorn TM. Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice. Reproduction. 2003;125(4):585–95.

    Article  PubMed  CAS  Google Scholar 

  161. Fleming WW, Sullivan CE, Torchia DA. Characterization of molecular motions in 13C-labeled aortic elastin by 13C-1H magnetic double resonance. Biopolymers. 1980;19(3):597–617.

    Article  PubMed  CAS  Google Scholar 

  162. Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415(6868):168–71.

    Article  PubMed  Google Scholar 

  163. Choi J, Bergdahl A, Zheng Q, Starcher B, Yanagisawa H, Davis EC. Analysis of dermal elastic fibers in the absence of fibulin-5 reveals potential roles for fibulin-5 in elastic fiber assembly. Matrix Biol. 2009;28(4):211–20.

    Article  PubMed  CAS  Google Scholar 

  164. Reinboth B, Hanssen E, Cleary EG, Gibson MA. Molecular interactions of biglycan and decorin with elastic fiber components: biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 2002;277(6):3950–7.

    Article  PubMed  CAS  Google Scholar 

  165. Trask BC, Trask TM, Broekelmann T, Mecham RP. The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. Mol Biol Cell. 2000;11(5):1499–507.

    PubMed  CAS  Google Scholar 

  166. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7(12):1133–44.

    PubMed  CAS  Google Scholar 

  167. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Article  PubMed  CAS  Google Scholar 

  168. Mydel P, Shipley JM, Adair-Kirk TL, Kelley DG, Broekelmann TJ, Mecham RP, et al. Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J Biol Chem. 2008;283(15):9513–22.

    Article  PubMed  CAS  Google Scholar 

  169. Senior RM, Gresham HD, Griffin GL, Brown EJ, Chung AE. Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin. J Clin Invest. 1992;90(6):2251–7.

    Article  PubMed  CAS  Google Scholar 

  170. Senior RM, Hinek A, Griffin GL, Pipoly DJ, Crouch EC, Mecham RP. Neutrophils show chemotaxis to type IV collagen and its 7 S domain and contain a 67 kD type IV collagen binding protein with lectin properties. Am J Respir Cell Mol Biol. 1989;1(6):479–87.

    PubMed  CAS  Google Scholar 

  171. Adair-Kirk TL, Atkinson JJ, Broekelmann TJ, Doi M, Tryggvason K, Miner JH, et al. A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J Immunol. 2003;171(1):398–406.

    PubMed  CAS  Google Scholar 

  172. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004;6(2):R75–91.

    Article  PubMed  CAS  Google Scholar 

  173. Vaday GG, Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukoc Biol. 2000;67(2):149–59.

    PubMed  CAS  Google Scholar 

  174. Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem. 2009;284(20):13792–803.

    Article  PubMed  CAS  Google Scholar 

  175. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009;284(36):24035–48.

    Article  PubMed  CAS  Google Scholar 

  176. Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol. 2002;168(10):5233–9.

    PubMed  CAS  Google Scholar 

  177. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99–111.

    Article  PubMed  CAS  Google Scholar 

  178. Elenstrom-Magnusson C, Chen W, Clinchy B, Obrink B, Severison E. IL-4-induced B cell migration involves transient interactions between beta 1 integrins and extracellular matrix components. Int Immunol. 1995;7(4):567–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Jenean O’Brien and Jaime Fornetti for critical review of the manuscript. We also thank Dr. Gilbert H. Smith (National Institutes of Health, MD) for providing us with the electron micrograph image in figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pepper Schedin.

Additional information

Financial Support

Supported by Department of Defense Idea Award#BC095850 to PS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maller, O., Martinson, H. & Schedin, P. Extracellular Matrix Composition Reveals Complex and Dynamic Stromal-Epithelial Interactions in the Mammary Gland. J Mammary Gland Biol Neoplasia 15, 301–318 (2010). https://doi.org/10.1007/s10911-010-9189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-010-9189-6

Keywords

Navigation