Skip to main content
Log in

Dynamic modeling of methylprednisolone effects on body weight and glucose regulation in rats

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Influences of methylprednisolone (MPL) and food consumption on body weight (BW), and the effects of MPL on glycemic control including food consumption and the dynamic interactions among glucose, insulin, and free fatty acids (FFA) were evaluated in normal male Wistar rats. Six groups of animals received either saline or MPL via subcutaneous infusions at the rate of 0.03, 0.1, 0.2, 0.3 and 0.4 mg/kg/h for different treatment periods. BW and food consumption were measured twice a week. Plasma concentrations of MPL and corticosterone (CST) were determined at animal sacrifice. Plasma glucose, insulin, and FFA were measured at various times after infusion. Plasma MPL concentrations were simulated by a two-compartment model and used as the driving force in the pharmacodynamic (PD) analysis. All data were modeled using ADAPT 5. The MPL treatments caused reduction of food consumption and body weights in all dosing groups. The steroid also caused changes in plasma glucose, insulin, and FFA concentrations. Hyperinsulinemia was achieved rapidly at the first sampling time of 6 h; significant elevations of FFA were observed in all drug treatment groups; whereas only modest increases in plasma glucose were observed in the low dosing groups (0.03 and 0.1 mg/kg/h). Body weight changes were modeled by dual actions of MPL: inhibition of food consumption and stimulation of weight loss, with food consumption accounting for the input of energy for body weight. Dynamic models of glucose and insulin feedback interactions were extended to capture the major metabolic effects of FFA: stimulation of insulin secretion and inhibition of insulin-stimulated glucose utilization. These models of body weight and glucose regulation adequately captured the experimental data and reflect significant physiological interactions among glucose, insulin, and FFA. These mechanism-based PD models provide further insights into the multi-factor control of this essential metabolic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McMahon M, Gerich J, Rizza R (1988) Effects of glucocorticoids on carbohydrate metabolism. Diabetes Metab Rev 4:17–30

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa A, Johnson JH, Ohneda M, McAllister CT, Inman L, Alam T, Unger RH (1992) Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes. J Clin Invest 90:497–504

    Article  PubMed  CAS  Google Scholar 

  3. Stojanovska L, Rosella G, Proietto J (1990) Evolution of dexamethasone-induced insulin resistance in rats. Am J Physiol 258:E748–E756

    PubMed  CAS  Google Scholar 

  4. Rafacho A, Giozzet VA, Boschero AC, Bosqueiro JR (2008) Functional alterations in endocrine pancreas of rats with different degrees of dexamethasone-induced insulin resistance. Pancreas 36:284–293

    Article  PubMed  CAS  Google Scholar 

  5. Opherk C, Tronche F, Kellendonk C, Kohlmuller D, Schulze A, Schmid W, Schutz G (2004) Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol Endocrinol 18:1346–1353

    Article  PubMed  CAS  Google Scholar 

  6. Gettys TW, Watson PM, Taylor IL, Collins S (1997) RU-486 (Mifepristone) ameliorates diabetes but does not correct deficient beta-adrenergic signalling in adipocytes from mature C57BL/6J-ob/ob mice. Int J Obes Relat Metab Disord 21:865–873

    Article  PubMed  CAS  Google Scholar 

  7. Selyatitskaya VG, Kuz’minova OI, Odintsov SV (2002) Development of insulin resistance in experimental animals during long-term glucocorticoid treatment. Bull Exp Biol Med 133:339–341

    Article  PubMed  CAS  Google Scholar 

  8. Landersdorfer CB, Jusko WJ (2008) Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet 47:417–448

    Article  PubMed  CAS  Google Scholar 

  9. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  PubMed  CAS  Google Scholar 

  10. Mlinar B, Marc J, Janez A, Pfeifer M (2007) Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 375:20–35

    Article  PubMed  CAS  Google Scholar 

  11. Buren J, Lai YC, Lundgren M, Eriksson JW, Jensen J (2008) Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch Biochem Biophys 474:91–101

    Article  PubMed  CAS  Google Scholar 

  12. Chu CA, Sherck SM, Igawa K, Sindelar DK, Neal DW, Emshwiller M, Cherrington AD (2002) Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs. Am J Physiol Endocrinol Metab 282:E402–E411

    PubMed  CAS  Google Scholar 

  13. Chen X, Iqbal N, Boden G (1999) The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest 103:365–372

    Article  PubMed  CAS  Google Scholar 

  14. Williamson JR, Kreisberg RA, Felts PW (1966) Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci USA 56:247–254

    Article  PubMed  CAS  Google Scholar 

  15. Delarue J, Magnan C (2007) Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 10:142–148

    Article  PubMed  CAS  Google Scholar 

  16. Nicod N, Giusti V, Besse C, Tappy L (2003) Metabolic adaptations to dexamethasone-induced insulin resistance in healthy volunteers. Obes Res 11:625–631

    Article  PubMed  CAS  Google Scholar 

  17. Jin JY, Jusko WJ (2009) Pharmacodynamics of glucose regulation by methylprednisolone. II. Normal rats. Biopharm Drug Dispos 30:35–48

    Article  PubMed  CAS  Google Scholar 

  18. Jin JY, Jusko WJ (2009) Pharmacodynamics of glucose regulation by methylprednisolone. I. Adrenalectomized rats. Biopharm Drug Dispos 30:21–34

    Article  PubMed  CAS  Google Scholar 

  19. Dallman MF, la Fleur SE, Pecoraro NC, Gomez F, Houshyar H, Akana SF (2004) Minireview: glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 145:2633–2638

    Article  PubMed  CAS  Google Scholar 

  20. Okada S, York DA, Bray GA (1992) Mifepristone (RU 486), a blocker of type II glucocorticoid and progestin receptors, reverses a dietary form of obesity. Am J Physiol 262:R1106–R1110

    PubMed  CAS  Google Scholar 

  21. Langley SC, York DA (1990) Effects of antiglucocorticoid RU 486 on development of obesity in obese fa/fa Zucker rats. Am J Physiol 259:R539–R544

    PubMed  CAS  Google Scholar 

  22. Novelli M, Pocai A, Chiellini C, Maffei M, Masiello P (2008) Free fatty acids as mediators of adaptive compensatory responses to insulin resistance in dexamethasone-treated rats. Diabetes Metab Res Rev 24:155–164

    Article  PubMed  CAS  Google Scholar 

  23. Barbera M, Fierabracci V, Novelli M, Bombara M, Masiello P, Bergamini E, De Tata V (2001) Dexamethasone-induced insulin resistance and pancreatic adaptive response in aging rats are not modified by oral vanadyl sulfate treatment. Eur J Endocrinol 145:799–806

    Article  PubMed  CAS  Google Scholar 

  24. De Vos P, Saladin R, Auwerx J, Staels B (1995) Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. J Biol Chem 270:15958–15961

    Article  PubMed  Google Scholar 

  25. Haughey DB, Jusko WJ (1988) Analysis of methylprednisolone, methylprednisone and corticosterone for assessment of methylprednisolone disposition in the rat. J Chromatogr 430:241–248

    Article  PubMed  CAS  Google Scholar 

  26. D’Orazio P, Burnett RW, Fogh-Andersen N, Jacobs E, Kuwa K, Kulpmann WR, Larsson L, Lewenstam A, Maas AH, Mager G, Naskalski JW, Okorodudu AO (2005) Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 51:1573–1576

    Article  PubMed  Google Scholar 

  27. Landersdorfer CB, DuBois DC, Almon RR, Jusko WJ (2009) Mechanism-based modeling of nutritional and leptin influences on growth in normal and type 2 diabetic rats. J Pharmacol Exp Ther 328:644–651

    Article  PubMed  CAS  Google Scholar 

  28. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. BioMedical Simulations Resource, Los Angeles

  29. Dallman M, Bhatnagar S (2001) Chronic stress and energy balance: role of the hypothalamo/pituitary/adrenal axis. In: McEwen BS (ed) Handbook of physiology, section 7: the endocrine system, vol VII. Oxford University Press, New York, pp 179–210

  30. Devenport L, Knehans A, Sundstrom A, Thomas T (1989) Corticosterone’s dual metabolic actions. Life Sci 45:1389–1396

    Article  PubMed  CAS  Google Scholar 

  31. Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ (2002) Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 29:1–24

    Article  PubMed  CAS  Google Scholar 

  32. Lima JJ, Matsushima N, Kissoon N, Wang J, Sylvester JE, Jusko WJ (2004) Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes. Clin Pharmacol Ther 76:27–37

    Article  PubMed  CAS  Google Scholar 

  33. Qi D, Rodrigues B (2007) Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab 292:E654–E667

    Article  PubMed  CAS  Google Scholar 

  34. Slavin BG, Ong JM, Kern PA (1994) Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 35:1535–1541

    PubMed  CAS  Google Scholar 

  35. Ong JM, Simsolo RB, Saffari B, Kern PA (1992) The regulation of lipoprotein lipase gene expression by dexamethasone in isolated rat adipocytes. Endocrinology 130:2310–2316

    Article  PubMed  CAS  Google Scholar 

  36. Boden G (2005) Free fatty acids and insulin secretion in humans. Curr Diab Rep 5:167–170

    Article  PubMed  CAS  Google Scholar 

  37. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, Peyot ML, Prentki M (2006) Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 55(Suppl 2):S16–S23

    Article  PubMed  CAS  Google Scholar 

  38. Pelkonen R, Miettinen TA, Taskinen MR, Nikkila EA (1968) Effect of acute elevation of plasma glycerol, triglyceride and FFA levels on glucose utilization and plasma insulin. Diabetes 17:76–82

    PubMed  CAS  Google Scholar 

  39. Crespin SR, Greenough WB III, Steinberg D (1973) Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect. J Clin Invest 52:1979–1984

    Article  PubMed  CAS  Google Scholar 

  40. Zhou YP, Grill VE (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 93:870–876

    Article  PubMed  CAS  Google Scholar 

  41. Sako Y, Grill VE (1990) A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127:1580–1589

    Article  PubMed  CAS  Google Scholar 

  42. Stein DT, Esser V, Stevenson BE, Lane KE, Whiteside JH, Daniels MB, Chen S, McGarry JD (1996) Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 97:2728–2735

    Article  PubMed  CAS  Google Scholar 

  43. Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:863–870

    Article  PubMed  CAS  Google Scholar 

  44. Boden G (2001) Free fatty acids-the link between obesity and insulin resistance. Endocr Pract 7:44–51

    PubMed  CAS  Google Scholar 

  45. Roy A, Parker RS (2006) Dynamic modeling of free fatty acid, glucose, and insulin: an extended “minimal model”. Diabetes Technol Ther 8:617–626

    Article  PubMed  CAS  Google Scholar 

  46. Bergman RN, Phillips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68:1456–1467

    Article  PubMed  CAS  Google Scholar 

  47. Howard BV, Klimes I, Vasquez B, Brady D, Nagulesparan M, Unger RH (1984) The antilipolytic action of insulin in obese subjects with resistance to its glucoregulatory action. J Clin Endocrinol Metab 58:544–548

    Article  PubMed  CAS  Google Scholar 

  48. Isaksson C, Gabrielsson J, Wallenius K, Peletier LA, Toreson H (2009) Turnover modeling of non-esterified fatty acids in rats after multiple intravenous infusions of nicotinic acid. Dose Response 7:247–269

    Article  PubMed  CAS  Google Scholar 

  49. van Schaick EA, de Greef HJ, Ijzerman AP, Danhof M (1997) Physiological indirect effect modeling of the antilipolytic effects of adenosine A1-receptor agonists. J Pharmacokinet Biopharm 25:673–694

    Article  PubMed  Google Scholar 

  50. Van der Graaf PH, Van Schaick EA, Visser SA, De Greef HJ, Ijzerman AP, Danhof M (1999) Mechanism-based pharmacokinetic-pharmacodynamic modeling of antilipolytic effects of adenosine A(1) receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. J Pharmacol Exp Ther 290:702–709

    PubMed  Google Scholar 

  51. Nawano M, Oku A, Ueta K, Umebayashi I, Ishirahara T, Arakawa K, Saito A, Anai M, Kikuchi M, Asano T (2000) Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 278:E535–E543

    PubMed  CAS  Google Scholar 

  52. Sato S, Katayama K, Kakemi M, Koizumi T (1988) A kinetic study of chlorpromazine on the hyperglycemic response in rats. II. Effect of chlorpromazine on plasma glucose. J Pharmacobiodyn 11:492–503

    PubMed  CAS  Google Scholar 

  53. Hayashi R, Wada H, Ito K, Adcock IM (2004) Effects of glucocorticoids on gene transcription. Eur J Pharmacol 500:51–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by Grant GM24211 from the National Institute of Health. The authors thank Ms. Nancy Pyszczynski for performing the HPLC assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., DuBois, D.C., He, Y. et al. Dynamic modeling of methylprednisolone effects on body weight and glucose regulation in rats. J Pharmacokinet Pharmacodyn 38, 293–316 (2011). https://doi.org/10.1007/s10928-011-9194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-011-9194-4

Keywords

Navigation