Skip to main content
Log in

Porphyrins incorporated to SiO2 gels as fluorescent materials and efficient catalysts in biomimetic photocatalytic systems

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Two types of porphyrins (water-soluble and water-insoluble) were encapsulated in transparent monolithic silica gels. Their properties in solutions and at various steps of the sol–gel process were studied by absorption and emission electron spectroscopy. A photocatalytic system containing porphyrins immobilized in powdered silica gel for α-pinene biomimetic oxidation to pinocarveol, pinocarvone and myrtenol is reported. The impact of several parameters (visible light irradiation time, organic solvent, the presence of an electron acceptor/donor, and substrate concentration) on this biotransformation process was investigated and optimized. It was established that photochemical excitation of sol–gel immobilized metal-free porphyrins is crucial for catalyzed oxidation of monoterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Milgrom LR (1997) The colors of life: an introduction to the chemistry of porphyrins and related compounds. Oxford University Press, Oxford

    Google Scholar 

  2. Kadish KM, Smith KM, Guilard R (eds) (2000) The porphyrin handbook, vol 1–10. Academic Press, New York

    Google Scholar 

  3. Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook, vol 11–20. Academic Press, New York

    Google Scholar 

  4. Sánchez-García D, Sessler JL (2008) Chem Soc Rev 37:215–232. doi:10.1039/b704945e

    Article  PubMed  CAS  Google Scholar 

  5. McKeown NB (1998) Phthalocyanine materials: synthesis, structure and function. Cambrige University Press, New York

    Google Scholar 

  6. Sessler JL, Weghorn SJ (1997) Expanded, contracted and isomeric porphyrins. Elsevier, Oxford

    Google Scholar 

  7. Makarska M, Polska K, Radzki S (2007) In: Podbielska H, Sieroń A, Stręk W (eds) Acta of biomedical engineering: aspects of photodynamic medicine. Indygo Zahir Media, Wrocław

    Google Scholar 

  8. Dougherty TJ, Gomer CJ, Henderson BW (1998) J Natl Cancer Inst 90:889–905. doi:10.1093/jnci/90.12.889

    Article  PubMed  CAS  Google Scholar 

  9. Kessel D, Dougherty TJ (1999) Rev Contemp Pharmacother 10:19–24

    CAS  Google Scholar 

  10. DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 234–235:351–371. doi:10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  11. Basic research needs for solar energy utilization (2005) US Department of Energy. http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf

  12. Li C, Ly J, Lei B, Fan W, Zhang D, Han J, Meyyappan M, Thompson M, Zhou C (2004) J Phys Chem B 108:9646–9649. doi:10.1021/jp0498421

    Article  CAS  Google Scholar 

  13. Girard Y, Kondo M, Yoshizawa K (2006) Chem Phys 327:77–84. doi:10.1016/j.chemphys.2006.03.039

    Article  ADS  CAS  Google Scholar 

  14. Winkelmann CB, Ionica I, Chevalier X, Royal G, Bucher C, Bouchiat V (2007) Nano Lett 7:1454–1458. doi:10.1021/nl0630485

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Bartocci C, Maldotti A, Varani G (1996) Chim I’Industria 78:1097–1104

    CAS  Google Scholar 

  16. Song R, Robert A, Bernadou J, Meunier B (1998) Inorg Chim Acta 272:228–234. doi:10.1016/S0020-1693(97)05944-6

    Article  CAS  Google Scholar 

  17. Quici S, Banfi S, Pozzi G (1993) Gazz Chim Ital 123:597–612

    CAS  Google Scholar 

  18. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980. doi:10.1021/cr020443g

    Article  PubMed  CAS  Google Scholar 

  19. Campestrini S, Meunier B (1992) Inorg Chem 31:1999–2006. doi:10.1021/ic00037a006

    Article  CAS  Google Scholar 

  20. Nakagaki S, Benedito FL, Wypych F (2004) J Mol Catal Chem 217:121–131. doi:10.1016/j.molcata.2004.03.004

    Article  CAS  Google Scholar 

  21. Skrobot FC, Valente AA, Neves G, Rosa I, Rocha J, Cavaleiro JAS (2003) J Mol Catal Chem 201:211–222. doi:10.1016/S1381-1169(03)00181-X

    Article  CAS  Google Scholar 

  22. Haber J, Pamin K, Połtowicz J (2004) J Mol Catal Chem 224:153–159. doi:10.1016/j.molcata.2004.07.031

    Article  CAS  Google Scholar 

  23. Moreira MSM, Martins PR, Curi RB, Nascimento OR, Iamamoto Y (2005) J Mol Catal Chem 233:73–81. doi:10.1016/j.molcata.2005.01.045

    Article  CAS  Google Scholar 

  24. Papacídero AT, Rocha LA, Caetano BL, Molina E, Sacco HC, Nassar EJ, Martinelli Y, Mello C, Nakagaki S, Ciuffi KJ (2006) Colloids Surf A Physicochem Eng Asp 275:27–35. doi:10.1016/j.colsurfa.2005.09.013

    Article  CAS  Google Scholar 

  25. Kitamura N, Yamada K, Ueno K, Iwata S (2006) J Photochem Photobiol Chem 184:170–176. doi:10.1016/j.jphotochem.2006.04.011

    Article  CAS  Google Scholar 

  26. Avnir D, Levy D, Reisfeld R (1984) J Phys Chem 88:5956–5959. doi:10.1021/j150668a042

    Article  CAS  Google Scholar 

  27. Gill I, Ballesteros A (2000) Trends Biotechnol 18:282–296. doi:10.1016/S0167-7799(00)01457-8

    Article  PubMed  CAS  Google Scholar 

  28. Ariga K, Vinu A, Hill JP, Mori T (2007) Coord Chem Rev 251:2562–2591. doi:10.1016/j.ccr.2007.02.024

    Article  CAS  Google Scholar 

  29. Escribano P, Julián-López B, Planelles-Aragó J, Cordoncillo E, Viana B, Sanchez C (2008) J Mater Chem 18:23–40. doi:10.1039/b710800a

    Article  CAS  Google Scholar 

  30. Lan EH, Dave BC, Fukuto JM, Dunn B, Zink JI, Valentine JS (1999) J Mater Chem 9:45–53. doi:10.1039/a805541f

    Article  CAS  Google Scholar 

  31. Papkovsky DB, O’Riordan T, Soini A (2000) Biochem Soc Trans 28:74–77

    PubMed  CAS  Google Scholar 

  32. García-Sánchez MA, Tello SR, Sosa R, Campero A (2006) J Sol-Gel Sci Technol 37:93–97. doi:10.1007/s10971-006-6425-z

    Article  CAS  Google Scholar 

  33. De la Luz V, García-Sánchez MA, Campero A (2007) J Non-Cryst Solids 353:2143–2149. doi:10.1016/j.jnoncrysol.2007.03.010

    Article  CAS  Google Scholar 

  34. Delmarre D, Méallet-Renault R, Bied-Charreton C, Pasternack RF (1999) Anal Chim Acta 401:125–128. doi:10.1016/S0003-2670(99)00515-2

    Article  CAS  Google Scholar 

  35. Delmarre D, Méallet R, Bied-Charreton C, Pansu RB (1999) J Photochem Photobiol Chem 124:23–28. doi:10.1016/S1010-6030(99)00046-5

    Article  CAS  Google Scholar 

  36. Delmarre D, Bied-Charreton C (2000) Sens Actuators B Chem 62:136–142. doi:10.1016/S0925-4005(99)00383-4

    Article  Google Scholar 

  37. Im SH, Khalil GE, Callis J, Ahn BH, Gouterman M, Xia Y (2005) Talanta 67:492–497. doi:10.1016/j.talanta.2005.06.046

    Article  PubMed  CAS  Google Scholar 

  38. Grätzel M (2001) J Sol-Gel Sci Technol 22:7–13. doi:10.1023/A:1011273700573

    Article  Google Scholar 

  39. Ray AK, Tracey SM, Hodgson SNB (2001) J Sol-Gel Sci Technol 22:15–22. doi:10.1023/A:1011251917412

    Article  CAS  Google Scholar 

  40. Sun XD, Wang X-J, Shan W, Song JJ, Fan MG, Knobbe ET (1997) J Sol-Gel Sci Technol 9:169–181

    CAS  Google Scholar 

  41. Litrán R, Blanco E, Ramírez del Solar M, Esquivias L (1997) J Sol-Gel Sci Technol 8:985–990

    Google Scholar 

  42. Modzelewska A, Sur S, Kumar SK, Khan SR (2005) Curr Med Chem, Anti-Cancer Agents 5:477–499

    Article  CAS  Google Scholar 

  43. Bell SG, Sowden RJ, Wong L-L (2001) Chem Commun (Camb) 7:635–637. doi:10.1039/b100290m

    Article  Google Scholar 

  44. Maraval V, Ancel J-E, Meunier B (2002) J Catal 206:349–357. doi:10.1006/jcat.2001.3493

    Article  CAS  Google Scholar 

  45. Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, Aoki T (2002) J Nat Prod 65:509–512. doi:10.1021/np010445g

    Article  PubMed  CAS  Google Scholar 

  46. Herrero E, Casuscelli S, Fernandez J, Poncio C, Rueda M, Oyola O (2000) Molecules 5:336–337. doi:10.3390/50300336

    Article  CAS  Google Scholar 

  47. Moghadam M, Tangestaninejad S, Habibi MH, Mirkhani V (2004) J Mol Catal Chem 217:9–12. doi:10.1016/j.molcata.2004.03.001

    Article  CAS  Google Scholar 

  48. Kim W, Park J, Jo HJ, Kim H-J, Choi W (2008) J Phys Chem C 112:491–499. doi:10.1021/jp0747151

    Article  CAS  Google Scholar 

  49. Bearinger JP, Stone G, Christian AT, Dugan L, Hiddessen AL, Wu KJJ, Wu L, Hamilton J, Stockton C, Hubbell JA (2008) Langmuir 24:5179–5184. doi:10.1021/la703992r

    Article  PubMed  CAS  Google Scholar 

  50. Trytek M, Fiedurek J, Polska K, Radzki S (2005) Catal Lett 105:119–126. doi:10.1007/s10562-005-8014-0

    Article  CAS  Google Scholar 

  51. Trytek M, Fiedurek J, Radzki S (2007) Biotechnol Prog 23:131–137. doi:10.1021/bp060282s

    Article  PubMed  CAS  Google Scholar 

  52. Lindmark-Henriksson M (2003) Biotransformations of turpentine constituents. Oxygenation and estryfication. PhD thesis, Mid Sweden University

  53. Pasternack RF, Gibbs EJ, Gaudemer A (1985) J Am Chem Soc 107:8179–8186. doi:10.1021/ja00312a061

    Article  CAS  Google Scholar 

  54. Komai M, Itch I (1988) Talanta 35:723. doi:10.1016/0039-9140(88)80169-3

    Article  Google Scholar 

  55. Dargiewicz J, Makarska M, Radzki S (2002) Colloids Surf A Physicochem Eng Asp 208:159–165. doi:10.1016/S0927-7757(02)00142-5

    Article  CAS  Google Scholar 

  56. Makarska M, Radzki S, Legendziewicz J (2002) J Alloy Comp 341:233–238. doi:10.1016/S0925-8388(02)00099-3

    Article  CAS  Google Scholar 

  57. Dargiewicz-Nowicka J, Makarska M, Villegas MA, Legendziewicz J, Radzki S (2004) J Alloy Comp 380:380–388. doi:10.1016/j.jallcom.2004.03.089

    Article  CAS  Google Scholar 

  58. Gerasymchuk YS, Chernii VY, Tomachynski LA, Legendziewicz J, Radzki S (2005) Opt Mater 27:1484–1494. doi:10.1016/j.optmat.2005.01.013

    Article  ADS  CAS  Google Scholar 

  59. Polska K, Radzki S (2008) Opt Mater 30:1644–1654. doi:10.1016/j.optmat.2007.10.010

    Article  ADS  CAS  Google Scholar 

  60. Kane KM, Lorenz CR, Heilman DM, Lemke FR (1998) Inorg Chem 37:669–673. doi:10.1021/ic9710925

    Article  CAS  Google Scholar 

  61. Sobalik Z, Tvaruzkowa Z, Wichterlova B (1998) Microporous Mesoporous Mater 25:225–228. doi:10.1016/S1387-1811(98)00182-6

    Article  CAS  Google Scholar 

  62. Sarkany J (1997) J Mol Struct 410–411:145–148. doi:10.1016/S0022-2860(96)09688-3

    Article  Google Scholar 

  63. Humbert B, Burneau A (1992) J Non-Cryst Solids 143:75–83. doi:10.1016/S0022-3093(05)80555-1

    Article  ADS  CAS  Google Scholar 

  64. Humbert B (1995) J Non-Cryst Solids 191:29–37. doi:10.1016/0022-3093(95)00311-8

    Article  ADS  CAS  Google Scholar 

  65. Busman D, Berger RG (1994) In: Maarse H, van der Heij DG (eds) Trends in flavour research. Elsevier Science, Amsterdam

    Google Scholar 

  66. Savithiry N, Gage D, Fu W, Oriel P (1998) Biodegradation 9:337–341. doi:10.1023/A:1008304603734

    Article  PubMed  CAS  Google Scholar 

  67. Schlyter F, Birgersson G, Byers JA, Löfqvist J, Bergström G (1987) J Chem Ecol 13:701–716. doi:10.1007/BF01020153

    Article  CAS  Google Scholar 

  68. Connolly JD, Hill RA (1991) Dictionary of terpenoids. Chapman & Hall, London

    Google Scholar 

  69. The Pherobase Database of insect pheromones and semiochemicals (2003–2008) http://www.pherobase.com. Accessed 14 August 2008

  70. Miller DR (2000) Can Entomol 132:789–797

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor M. Majdan (Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland) for his valuable advice and comments during interpretation of FT-IR and Raman data. We thank Dr. J. Bis (Principal Scientist, GlaxoSmithKline, Research Triangle Park, USA) for correcting the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Trytek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trytek, M., Fiedurek, J., Lipke, A. et al. Porphyrins incorporated to SiO2 gels as fluorescent materials and efficient catalysts in biomimetic photocatalytic systems. J Sol-Gel Sci Technol 51, 272–286 (2009). https://doi.org/10.1007/s10971-009-1981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1981-7

Keywords

Navigation