Skip to main content
Log in

Nanoscale spinel ferrites prepared by mechanochemical route

Thermal stability and size dependent magnetic properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Among the many types of preparation and processing techniques, the nonconventional mechanochemical route has been recognized as a powerful method for the production of novel, high-performance, and low-cost nanomaterials. Because of their small constituent sizes and disordered structural state, nanoscale materials prepared by mechanochemical route are inherently unstable with respect to structural changes at elevated temperatures. Taking into account the considerable relevance of the thermal stability of nanoscale complex oxides to nanoscience and nanotechnology, in the present work, results on the response of mechanochemically prepared MgFe2O4 and NiFe2O4 to changes in temperature will be presented. Several interesting features are involved in the work, e.g., a relaxation of the mechanically induced cation distribution towards its equilibrium configuration, a disappearance of the superparamagnetism on heating, an increase of both the saturation magnetization and the Néel temperature with increasing particle size, and a core-shell structure of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Zhou, T. C. Schulthess and D. P. Landau, J. Appl. Phys., 99 (2006) 08H906.

    Google Scholar 

  2. Z. L. Wang, Y. Liu and Z. Zhang, Handbook of Nanophase and Nanostructured Materials, Vol. 3, Kluwer Academic/Plenum Publishers, New York 2002.

    Google Scholar 

  3. M. Sugimoto, J. Am. Ceram. Soc., 82 (1999) 269.

    Article  CAS  Google Scholar 

  4. M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin and V. G. Harris, Int. Mater. Rev., 49 (2004) 125.

    Article  CAS  Google Scholar 

  5. U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.-P. Contour, J.-F. Bobo, J. Fontcuberta and A. Fert, Adv. Mater., 18 (2006) 1733.

    Article  CAS  Google Scholar 

  6. V. V. Boldyrev, Russ. Chem. Rev., 75 (2006) 177.

    Article  CAS  Google Scholar 

  7. Y. T. Pavlyukhin, Y. Y. Medikov and V. V. Boldyrev, J. Solid State Chem., 53 (1984) 155.

    Article  CAS  Google Scholar 

  8. V. Šepelák, D. Baabe, F. J. Litterst and K. D. Becker, J. Appl. Phys., 88 (2000) 5884.

    Article  Google Scholar 

  9. V. Šepelák, I. Bergmann, S. Kipp and K. D. Becker, Z. Anorg. Allg. Chem., 631 (2005) 993.

    Article  CAS  Google Scholar 

  10. E. Avvakumov, M. Senna and N. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, Boston 2001.

    Google Scholar 

  11. V. Šepelák, U. Steinike, D. C. Uecker, S. Wissmann and K. D. Becker, J. Solid State Chem., 135 (1998) 52.

    Article  Google Scholar 

  12. G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, J. Appl. Phys., 87 (2000) 8005.

    Article  CAS  Google Scholar 

  13. M. Muroi, R. Street, P. G. McCormick and J. Amighian, Phys. Rev. B, 63 (2001) 184414.

    Google Scholar 

  14. W. Kim and F. Saito, Powder Technol., 114 (2001) 12.

    Article  CAS  Google Scholar 

  15. V. G. Harris, D. J. Fatemi, J. O. Cross, E. E. Carpenter, V. M. Browning, J. P. Kirkland, A. Mohan and G. J. Long, J. Appl. Phys., 94 (2003) 496.

    Article  CAS  Google Scholar 

  16. N. Guigue-Millot, S. Begin-Colin, Y. Champion, M. J. Hytch, G. Le Caër and P. Perriat, J. Solid State Chem., 170 (2003) 30.

    Article  CAS  Google Scholar 

  17. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléans, J.-L. Rehspringer and M. Kurmoo, Chem. Mater., 16 (2004) 5689.

    Article  CAS  Google Scholar 

  18. S. K. Pradhan, S. Bid, M. Gateshki and V. Petkov, Mater. Chem. Phys., 93 (2005) 224.

    Article  CAS  Google Scholar 

  19. P. Osmokrović, Č. Jovalekić, D. Manojlović and M. B. Pavlović, J. Optoelectron. Adv. Mater., 8 (2006) 312.

    Google Scholar 

  20. S. Dasgupta, K. B. Kim, J. Ellrich, J. Eckert and I. Manna, J. Alloys Compd., 424 (2006) 13.

    Article  CAS  Google Scholar 

  21. V. Šepelák, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, I. Bergmann and K. D. Becker, Chem. Mater., 18 (2006) 3057.

    Article  CAS  Google Scholar 

  22. V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst and K. D. Becker, J. Magn. Magn. Mater., 257 (2003) 377.

    Article  Google Scholar 

  23. V. Šepelák, U. Steinike, D. C. Uecker, R. Trettin, S. Wissmann and K. D. Becker, Solid State Ionics, 101–103 (1997) 1343.

    Article  Google Scholar 

  24. V. Šepelák, M. Menzel, I. Bergmann, M. Wiebcke, F. Krumeich and K. D. Becker, J. Magn. Magn. Mater., 272–276 (2004) 1616.

    Article  CAS  Google Scholar 

  25. V. Šepelák, I. Bergmann, A. Feldhoff, P. Heitjans, F. J. Litterst and K. D. Becker, Hyperfine Interact., 165 (2005) 81.

    Article  Google Scholar 

  26. K. Lagarec and D. G. Rancourt, Recoil — Mösbauer Spectral Analysis Software for Windows, Version 1.02, Department of Physics, University of Ottawa, Ottawa, ON 1998.

    Google Scholar 

  27. G. A. Sawatzky, F. Van Der Woude and A. H. Morrish, Phys. Rev., 183 (1969) 383.

    Article  CAS  Google Scholar 

  28. W. Kraus and G. Nolze, PowderCell for Windows, Version 2.4, Federal Institute for Materials Research and Testing, Berlin, Germany 2000.

    Google Scholar 

  29. H. St. C. O’Neill, H. Annersten and D. Virgo, Am. Miner., 77 (1992) 725.

    Google Scholar 

  30. M. George, A. M. John, S. S. Nair, P. A. Joy and M. R. Anantharaman, J. Magn. Magn. Mater., 302 (2006) 190.

    Article  CAS  Google Scholar 

  31. Y. D. Zhang, S. H. Ge, H. Zhang, S. Hui, J. I. Budnick, W. A. Hines, M. J. Yacaman and M. Miki, J. Appl. Phys., 95 (2004) 7130.

    Article  CAS  Google Scholar 

  32. K. Haneda and A. H. Morrish, J. Appl. Phys., 63 (1988) 4258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Šepelák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šepelák, V., Heitjans, P. & Becker, K.D. Nanoscale spinel ferrites prepared by mechanochemical route. J Therm Anal Calorim 90, 93–97 (2007). https://doi.org/10.1007/s10973-007-8481-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8481-1

Keywords

Navigation