Skip to main content

Advertisement

Log in

Proteomic profiling of x-linked muscular dystrophy

  • Review Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Progressive x-linked muscular dystrophy represents the most commonly inherited neuromuscular disorder in humans. Although the disintegration of the dystrophin-associated glycoprotein complex triggers the initial pathogenesis of Duchenne muscular dystrophy, secondary alterations in metabolic pathways, cellular signaling and the regulation of ion homeostasis are probably crucial factors that cause end-stage fibre degeneration. The application of mass spectrometry-based proteomics for the global cataloguing of muscle biomarkers has recently been applied to the analysis of the mdx animal model of muscular dystrophy and the biochemical evaluation of experimental exon skipping therapy. The fluorescence difference in-gel electrophoretic analysis of normal versus mdx diaphragm muscle revealed changed expression levels of proteins involved in nucleotide metabolism, Ca2+-handling, the cellular stress response and key bioenergetic processes. The swift up-regulation of small heat shock proteins, such as cvHsp, seems to form an integral part of the repair mechanisms in dystrophic fibres and may be exploitable as a new option to treat inherited muscle degeneration. Importantly, the mass spectrometry-based profiling of mdx muscle following the specific removal of exon 23 in the mutated dystrophin gene transcript showed a partial reversal of important secondary changes. Experimental exon skipping restored the expression of the dystrophin isoform Dp427, its associated glycoprotein β-dystroglycan, neuronal nitric oxide synthase, calsequestrin, adenylate kinase and the muscle-specific stress protein cvHsp. In the future, a well-defined set of signature molecules could be used to improve diagnosis, monitor disease progression, identify new therapeutic pathways, and validate the effects of novel drugs or experimental treatments such as gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3:283–291

    Article  CAS  PubMed  Google Scholar 

  • Alagaratnam S, Mertens BJ, Dalebout JC, Deelder AM, van Ommen GJ, den Dunnen JT, ‘t Hoen PA (2008) Serum protein profiling in mice: identification of factor XIIIa as a potential biomarker for muscular dystrophy. Proteomics 8:1552–1563

    Article  CAS  PubMed  Google Scholar 

  • Alderton JM, Steinhardt RA (2000) Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275:9452–9460

    Article  CAS  PubMed  Google Scholar 

  • Allamand V, Campbell KP (2000) Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum Mol Genet 9:2459–2467

    Article  CAS  PubMed  Google Scholar 

  • Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  • Baker PE, Kearney JA, Gong B, Merriam AP, Kuhn DE, Porter JD, Rafael-Fortney JA (2006) Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles. Neurogenetics 7:81–91

    Article  CAS  PubMed  Google Scholar 

  • Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330

    Article  CAS  PubMed  Google Scholar 

  • Borman L, Polla BS, Lotz BP, Gericke GS (1995) Expression of heat shock/stress proteins in Duchenne muscular dystrophy. Muscle Nerve 18:23–31

    Article  Google Scholar 

  • Bouchentouf M, Benabdallah BF, Tremblay JP (2004) Myoblast survival enhancement and transplantation success improvement by heat-shock treatment in mdx mice. Transplantation 77:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Campbell KP (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80:675–679

    Article  CAS  PubMed  Google Scholar 

  • Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E (2006) Mass spectrometry technologies for proteomics. Brief Funct Genomic Proteomic 4:295–320

    Article  CAS  PubMed  Google Scholar 

  • Capitanio D, Vasso M, Fania C, Moriggi M, Vigano A, Procacci P, Magnaghi V, Gelfi C (2009) Comparative proteomic profile of rat sciatic nerve and gastrocnemius muscle tissues in ageing by 2-D DIGE. Proteomics 9:2004–2020

    Article  CAS  PubMed  Google Scholar 

  • Chen YW, Zhao P, Borup R, Hoffman EP (2000) Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 151:1321–1336

    Article  CAS  PubMed  Google Scholar 

  • Cox GF, Kunkel LM (1997) Dystrophies and heart disease. Curr Opin Cardiol 12:329–343

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398

    Article  CAS  PubMed  Google Scholar 

  • Cullen MJ, Walsh J, Nicholson LV, Harris JB (1990) Ultrastructural localization of dystrophin in human muscle by using gold immunolabelling. Proc R Soc Lond B Biol Sci 240:197–210

    Article  CAS  PubMed  Google Scholar 

  • Culligan K, Banville N, Dowling P, Ohlendieck K (2002) Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. J Appl Physiol 92:435–445

    CAS  PubMed  Google Scholar 

  • de Hoog CL, Mann M (2004) Proteomics. Annu Rev Genomics Hum Genet 5:267–293

    Article  PubMed  CAS  Google Scholar 

  • de Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • DiFranco M, Woods CE, Capote J, Vergara JL (2008) Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains. Proc Natl Acad Sci USA 105:14698–14703

    Article  CAS  PubMed  Google Scholar 

  • Divet A, Huchet-Cadiou C (2002) Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice. Pflugers Arch 444:634–643

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  • Doran P, Dowling P, Lohan J, McDonnell K, Poetsch S, Ohlendieck K (2004) Subproteomics analysis of Ca2+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle. Eur J Biochem 271:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K (2006a) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHsp. Proteomics 6:4610–4621

    Article  CAS  PubMed  Google Scholar 

  • Doran P, Dowling P, Donoghue P, Buffini M, Ohlendieck K (2006b) Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle. Biochim Biophys Acta 1764:773–785

    CAS  PubMed  Google Scholar 

  • Doran P, Gannon J, O’Connell K, Ohlendieck K (2007) Proteomic profiling of animal models mimicking skeletal muscle disorders. Proteomics Clin Appl 1:1169–1184

    Article  CAS  Google Scholar 

  • Doran P, Donoghue P, O’Connell K, Gannon J, Ohlendieck K (2009a) Proteomics of skeletal muscle aging. Proteomics 9:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Doran P, Wilton SD, Fletcher S, Ohlendieck K (2009b) Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics 9:671–685

    Article  CAS  PubMed  Google Scholar 

  • Dowling P, Culligan K, Ohlendieck K (2002) Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy. Naturwissenschaften 89:75–88

    Article  CAS  PubMed  Google Scholar 

  • Dowling P, Lohan J, Ohlendieck K (2003) Comparative analysis of Dp427-deficient mdx tissues shows that the milder dystrophic phenotype of extraocular and toe muscle fibres is associated with a persistent expression of beta-dystroglycan. Eur J Cell Biol 82:222–230

    Article  CAS  PubMed  Google Scholar 

  • Dowling P, Doran P, Ohlendieck K (2004) Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Biochem J 379:479–488

    Article  CAS  PubMed  Google Scholar 

  • Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12:349–361

    Article  CAS  PubMed  Google Scholar 

  • Emery AE (2002a) The muscular dystrophies. Lancet 359:687–695

    Article  CAS  PubMed  Google Scholar 

  • Emery AE (2002b) Muscular dystrophy into the new millennium. Neuromuscul Disord 12:343–349

    Article  PubMed  Google Scholar 

  • Emery A, Muntoni F (2003) Duchenne muscular dystrophy, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Ervasti JM, Sonnemann KJ (2008) Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 265:191–225

    Article  CAS  PubMed  Google Scholar 

  • Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Ferretti R, Marques MJ, Pertille A, Neto HS (2009) Sarcoplasmic-endoplasmic-reticulum Ca2+ -ATPase and calsequestrin are overexpressed in spared intrinsic laryngeal muscles of dystrophin-deficient mdx mice. Muscle Nerve 39:609–615

    Article  CAS  PubMed  Google Scholar 

  • Gauthier DJ, Lazure C (2008) Complementary methods to assist subcellular fractionation in organellar proteomics. Expert Rev Proteomics 5:603–617

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Molloy MP, Chamberlain JS, Andrews PC (2003) Proteomic analysis of mdx skeletal muscle: great reduction of adenylate kinase 1 expression and enzymatic activity. Proteomics 3:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Molloy MP, Chamberlain JS, Andrews PC (2004) Differential expression of the skeletal muscle proteome in mdx mice at different ages. Electrophoresis 25:2576–2585

    Article  CAS  PubMed  Google Scholar 

  • Gehrig SM, Ryall JG, Schertzer JD, Lynch GS (2008) Insulin-like growth factor-I analogue protects muscles of dystrophic mdx mice from contraction-mediated damage. Exp Physiol 93:1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase—role in Duchenne muscular dystrophy. J Cell Sci 121:2246–2255

    Article  CAS  PubMed  Google Scholar 

  • Goerg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  CAS  Google Scholar 

  • Griffin JL, Des Rosiers C (2009) Applications of metabolomics and proteomics to the mdx mouse model of Duchenne muscular dystrophy: lessons from downstream of the transcriptome. Genome Med 1:32.1–32.11

    Article  CAS  Google Scholar 

  • Gulston MK, Rubtsov DV, Atherton HJ, Clarke K, Davies KE, Lilley KS, Griffin JL (2008) A combined metabolomic and proteomic investigation of the effects of a failure to express dystrophin in the mouse heart. J Proteome Res 7:2069–2077

    Article  CAS  PubMed  Google Scholar 

  • Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM (2003) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci USA 99:15000–15005

    Article  CAS  Google Scholar 

  • Henry MD, Campbell KP (1999) Dystroglycan inside and out. Curr Opin Cell Biol 11:602–607

    Article  CAS  PubMed  Google Scholar 

  • Isfort RJ (2002) Proteomic analysis of striated muscle. J Chromatogr B 771:155–165

    Article  CAS  Google Scholar 

  • Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, McCulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  CAS  PubMed  Google Scholar 

  • Koenig M, Kunkel LM (1990) Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 265:4560–4566

    CAS  PubMed  Google Scholar 

  • Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–226

    Article  CAS  PubMed  Google Scholar 

  • Krueger J, Kunert-Keil C, Bisping F, Brinkmeier H (2008) Transient receptor potential cation channels in normal and dystrophic mdx muscle. Neuromuscul Disord 18:501–513

    Article  Google Scholar 

  • Lovering RM, Michaelson L, Ward CW (2009) Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am J Physiol Cell Physiol 297:C571–C580

    Article  CAS  PubMed  Google Scholar 

  • Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibres detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955

    Article  CAS  PubMed  Google Scholar 

  • Manzur AY, Muntoni F (2009) Diagnosis and new treatments in muscular dystrophies. J Neurol Neurosurg Psychiatry 80:706–714

    CAS  PubMed  Google Scholar 

  • Manzur AY, Kuntzer T, Pike M, Swan A (2008) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev (1):CD003725

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  • Marques MJ, Ferretti R, Vomero VU, Minatel E, Neto HS (2007) Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 35:349–353

    Article  PubMed  Google Scholar 

  • Matsumura CY, Pertille A, Albuquerque TC, Santo Neto H, Marques MJ (2009) Diltiazem and verapamil protect dystrophin-deficient muscle fibers of MDX mice from degeneration: a potential role in calcium buffering and sarcolemmal stability. Muscle Nerve 39:167–176

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Wang EL, Nassar KL, Peter AK, Crosbie RH (2007) Structural and functional analysis of the sarcoglycan-sarcospan subcomplex. Exp Cell Res 313:639–651

    Article  CAS  PubMed  Google Scholar 

  • Minden JS, Dowd SR, Meyer HE, Stuehler K (2009) Difference gel electrophoresis. Electrophoresis 30:S156–S161

    Article  PubMed  Google Scholar 

  • Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323:646–650

    Article  CAS  PubMed  Google Scholar 

  • Muir LA, Chamberlain JS (2009) Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Rev Mol Med 11:e18

    Article  PubMed  Google Scholar 

  • Nakamura A, Takeda S (2009) Exon-skipping therapy for Duchenne muscular dystrophy. Neuropathology 29:494–501

    Article  PubMed  Google Scholar 

  • Nicholl ID, Quinlan RA (1994) Chaperone activity of alpha-crystallins modulates intermediate filament assembly. EMBO J 13:945–953

    CAS  PubMed  Google Scholar 

  • Ohlendieck K (1996) Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the subsarcolemmal membrane cytoskeleton. Eur J Cell Biol 69:1–10

    CAS  PubMed  Google Scholar 

  • Ohlendieck K, Campbell KP (1991) Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle. FEBS Lett 283:230–234

    Article  CAS  PubMed  Google Scholar 

  • Ohlendieck K, Ervasti JM, Matsumura K, Kahl SD, Leveille CJ, Campbell KP (1991a) Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7:499–508

    Article  CAS  PubMed  Google Scholar 

  • Ohlendieck K, Ervasti JM, Snook JB, Campbell KP (1991b) Dystrophin glycoprotein complex is highly enriched in skeletal muscle sarcolemma. J Cell Biol 112:135–148

    Article  CAS  PubMed  Google Scholar 

  • Ohlendieck K, Matsumura K, Ionasescu VV, Towbin JA, Bosch P, Weinstein SL, Sernett SW, Campbell KP (1993) Duchenne muscular dystrophy: deficiency of dystrophin-associated proteins in the sarcolemma. Neurology 43:795–800

    CAS  PubMed  Google Scholar 

  • Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M (2005) Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 32:563–576

    Article  CAS  PubMed  Google Scholar 

  • Piccolo F, Moore SA, Mathews KD, Campbell KP (2002) Limb-girdle muscular dystrophies. Adv Neurol 88:273–291

    CAS  PubMed  Google Scholar 

  • Pieper R, Gatlin CL, Makusky AJ, Russo PS, Schatz CR, Miller SS, Su Q, McGrath AM, Estock MA, Parmar PP, Zhao M, Huang ST, Zhou J, Wang F, Esquer-Blasco R, Anderson NL, Taylor J, Steiner S (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3:1345–1364

    Article  CAS  PubMed  Google Scholar 

  • Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    Article  CAS  PubMed  Google Scholar 

  • Rees ML, Lien CF, Gorecki DC (2007) Dystrobrevins in muscle and non-muscle tissues. Neuromuscul Disord 17:123–134

    Article  PubMed  Google Scholar 

  • Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  CAS  PubMed  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539

    Article  CAS  PubMed  Google Scholar 

  • Teichmann MD, Wegner FV, Fink RH, Chamberlain JS, Launikonis BS, Martinac B, Friedrich O (2008) Inhibitory control over Ca2+ sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression. PLoS One 3:e3644

    Article  PubMed  CAS  Google Scholar 

  • Thomas LB, Joseph GL, Adkins TD, Andrade FH, Stemple JC (2008) Laryngeal muscles are spared in the dystrophin deficient mdx mouse. J Speech Lang Hear Res 51:586–595

    Article  PubMed  Google Scholar 

  • Torres LFB, Duchen LW (1987) The mutant mdx: inherited myopathy in the mouse. Brain 110:269–299

    Article  PubMed  Google Scholar 

  • Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, ‘t Hoen PA (2005) Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6:e98

    Article  CAS  Google Scholar 

  • Turner PR, Schultz R, Ganguly B, Steinhardt RA (1993) Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle. J Membr Biol 133:243–251

    CAS  PubMed  Google Scholar 

  • van Ommen GJ, van Deutekom J, Aartsma-Rus A (2008) The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 10:140–149

    PubMed  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Wilton SD, Fletcher S (2008) Exon skipping and Duchenne muscular dystrophy: hope, hype and how feasible? Neurol India 56:254–262

    Article  PubMed  Google Scholar 

  • Wittmann-Liebold B, Graack HR, Pohl T (2006) Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6:4688–4703

    Article  CAS  PubMed  Google Scholar 

  • Woods CE, Novo D, DiFranco M, Vergara JL (2004) The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557:59–75

    Article  CAS  PubMed  Google Scholar 

  • Zaluzec EJ, Gage DA, Watson JT (1995) Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization. Protein Expr Purif 6:109–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang SZ, Xie HQ, Xu Y, Li XQ, Wei RQ, Zhi W, Deng L, Qiu L, Yang ZM (2008) Regulation of cell proliferation by fast myosin light chain 1 in myoblasts derived from extraocular muscle, diaphragm and gastrocnemius. Exp Biol Med 233:1374–1384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Muscular Dystrophy Ireland, the Irish Health Research Board, the Higher Education Authority and Science Foundation Ireland for continued support of our muscle research programme. We would like to thank past and present collaborators and members of the NUIM Muscle Biology Laboratory for all their help and encouragement to establish a muscle proteomics unit in NUI Maynooth over the last few years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Ohlendieck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, C., Carberry, S. & Ohlendieck, K. Proteomic profiling of x-linked muscular dystrophy. J Muscle Res Cell Motil 30, 267–279 (2009). https://doi.org/10.1007/s10974-009-9197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9197-6

Keywords

Navigation