Skip to main content
Log in

Characterizations of myosin essential light chain’s N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Cross-bridge kinetics were studied at 20 °C in cardiac muscle strips from transgenic (Tg) mice expressing N-terminal 43 amino acid truncation mutation (Δ43) of myosin essential light chain (ELC), and the results were compared to those from Tg-wild type (WT) mice. Sinusoidal length changes were applied to activated skinned papillary muscle strips to induce tension transients, from which two exponential processes were deduced to characterize the cross-bridge kinetics. Their two rate constants were studied as functions of ATP, phosphate (Pi), ADP, and Ca2+ concentrations to characterize elementary steps of the cross-bridge cycle consisting of six states. Our results demonstrate for the first time that the cross-bridge kinetics of Δ43 are accelerated owing to an acceleration of the rate constant k 2 of the cross-bridge detachment step, and that the number of strongly attached cross-bridges are decreased because of a reduction of the equilibrium constant K 4 of the force generation step. The isometric tension and stiffness of Δ43 are diminished compared to WT, but the force per cross-bridge is not changed. Stiffness measurement during rigor induction demonstrates a reduction in the stiffness in Δ43, indicating that the N-terminal extension of ELC forms an extra linkage between the myosin cross-bridge and actin. The tension-pCa study demonstrates that there is no Ca2+ sensitivity change with Δ43, but the cooperativity is diminished. These results demonstrate the importance of the N-terminal extension of ELC in maintaining the myosin motor function during force generation and optimal cardiac performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aydt EM, Wolff G, Morano I (2007) Molecular modeling of the myosin-S1(A1) isoform. J Struct Biol 159(1):158–163

    Article  PubMed  CAS  Google Scholar 

  • Bottinelli R, Betto R, Schiaffino S, Reggiani C (1994) Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol 478(Pt 2):341–349

    PubMed  CAS  Google Scholar 

  • Buckingham M, Kelly R, Tajbakhsh S, Zammit P (1998) The formation and maturation of skeletal muscle in the mouse: the myosin MLC1F/3F gene as a molecular model. Acta Physiol Scand 163(3):S3–S5

    Article  PubMed  CAS  Google Scholar 

  • Dantzig JA, Goldman YE, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 451:247–278

    PubMed  CAS  Google Scholar 

  • Fortune NS, Geeves MA, Ranatunga KW (1991) Tension responses to rapid pressure release in glycerinated rabbit muscle fibers. Proc Natl Acad Sci USA 88(16):7323–7327

    Article  PubMed  CAS  Google Scholar 

  • Frank G, Weeds AG (1974) The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur J Biochem 44(2):317–334

    Article  PubMed  CAS  Google Scholar 

  • Godt RE, Maughan DW (1988) On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol 254(5 Pt 1):C591–C604

    PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80(2):853–924

    PubMed  CAS  Google Scholar 

  • Henry GD, Winstanley MA, Dalgarno DC, Scott GM, Levine BA, Trayer IP (1985) Characterization of the actin-binding site on the alkali light chain of myosin. Biochim Biophys Acta 830(3):233–243

    Article  PubMed  CAS  Google Scholar 

  • Hernandez OM, Jones M, Guzman G, Szczesna-Cordary D (2007) Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol 292(4):H1643–H1654

    Article  PubMed  CAS  Google Scholar 

  • Houdusse A, Cohen C (1996) Structure of the regulatory domain of scallop myosin at 2 A resolution: implications for regulation. Structure 4(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto H (2000) Influence of ionic strength on the actomyosin reaction steps in contracting skeletal muscle fibers. Biophys J 78(6):3138–3149. doi:10.1016/S0006-3495(00)76850-0

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ, Moss RL (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres. J Physiol 311:179–199

    Google Scholar 

  • Kawai M (1978) Head rotation or dissociation? A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed. Biophys J 22(1):97–103. doi:10.1016/S0006-3495(78)85473-3

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil 1(3):279–303

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Halvorson HR (1989) Role of MgATP and MgADP in the cross-bridge kinetics in chemically skinned rabbit psoas fibers. Study of a fast exponential process (C). Biophys J 55(4):595–603

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J 59(2):329–342

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Kuntz ID (1973) Optical diffraction studies of muscle fibers. Biophys J 13:857–876

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Zhao Y (1993) Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys J 65(2):638–651. doi:10.1016/S0006-3495(93)81109-3

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Cox RN, Brandt PW (1981) Effect of Ca ion concentration on cross-bridge kinetics in rabbit psoas fibers. Evidence for the presence of two Ca-activated states of thin filament. Biophys J 35(2):375–384. doi:10.1016/S0006-3495(81)84796-0

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Wray JS, Guth K (1990) Effect of ionic strength on crossbridge kinetics as studied by sinusoidal analysis, ATP hydrolysis rate and X-ray diffraction techniques in chemically skinned rabbit psoas fibres. J Muscle Res Cell Motil 11(5):392–402

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Saeki Y, Zhao Y (1993) Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res 73(1):35–50

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak K, Xu Y, Jones M, Guzman G, Hernandez OM, Kerrick WG, Szczesna-Cordary D (2009) The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction. J Mol Biol 387(3):706–725

    Article  PubMed  CAS  Google Scholar 

  • Kuby SA, Noda L, Lardy HA (1954) Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem 209(1):191–201

    PubMed  CAS  Google Scholar 

  • Lawson JW, Veech RL (1979) Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem 254(14):6528–6537

    PubMed  CAS  Google Scholar 

  • Lowey S, Trybus KM (2010) Common structural motifs for the regulation of divergent class II myosins. J Biol Chem 285(22):16403–16407. doi:10.1074/jbc.R109.025551

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Waller GS, Trybus KM (1993) Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365(6445):454–456

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an interaction between the SH3 domain and the N-terminal extension of the essential light chain in class II myosins. J Mol Biol 371(4):902–913

    Article  PubMed  CAS  Google Scholar 

  • Michael JJ, Gollapudi SK, Ford SJ, Kazmierczak K, Szczesna-Cordary D, Chandra M (2012) Deletion of 1–43 amino acids in cardiac myosin essential light chain blunts length dependency of Ca2+ sensitivity and crossbridge detachment kinetics. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00572.2012

    PubMed  Google Scholar 

  • Miller MS, Palmer BM, Ruch S, Martin LA, Farman GP, Wang Y, Robbins J, Irving TC, Maughan DW (2005) The essential light chain N-terminal extension alters force and fiber kinetics in mouse cardiac muscle. J Biol Chem 280(41):34427–34434

    Article  PubMed  CAS  Google Scholar 

  • Milligan RA, Whittaker M, Safer D (1990) Molecular structure of F-actin and location of surface binding sites. Nature 348(6298):217–221

    Article  PubMed  CAS  Google Scholar 

  • Miyanishi T, Ishikawa T, Hayashibara T, Maita T, Wakabayashi T (2002) The two actin-binding regions on the myosin heads of cardiac muscle. Biochemistry 41(17):5429–5438

    Article  PubMed  CAS  Google Scholar 

  • Morano I (1999a) Tuning the human heart molecular motors by myosin light chains. J Mol Med (Berl) 77(7):544–555

    Article  CAS  Google Scholar 

  • Morano I (1999b) Tuning the human heart molecular motors by myosin light chains. J Mol Med 77(7):544–555

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Ritter O, Bonz A, Timek T, Vahl CF, Michel G (1995) Myosin light chain-actin interaction regulates cardiac contractility. Circ Res 76(5):720–725

    Article  PubMed  CAS  Google Scholar 

  • Muthu P, Wang L, Yuan CC, Kazmierczak K, Huang W, Hernandez OM, Kawai M, Irving TC, Szczesna-Cordary D (2011) Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB J 25(12):4394–4405

    Article  PubMed  CAS  Google Scholar 

  • Opie LH, Mansford KR, Owen P (1971) Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J 124(3):475–490

    PubMed  CAS  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261(5117):50–58

    Article  PubMed  CAS  Google Scholar 

  • Ritter O, Luther HP, Haase H, Baltas LG, Baumann G, Schulte HD, Morano I (1999) Expression of atrial myosin light chains but not alpha-myosin heavy chains is correlated in vivo with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy. J Mol Med 77(9):677–685

    Article  PubMed  CAS  Google Scholar 

  • Roth K, Hubesch B, Meyerhoff DJ, Naruse S, Gober JR, Lawry TJ, Boska MD, Matson GB, Weiner MW (1989) Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy. J Magn Res 81:299–311

    CAS  Google Scholar 

  • Sutoh K (1982) An actin-binding site on the 20 K fragment of myosin subfragment 1. Biochemistry 21(19):4800–4804

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL (1995) Function of the N terminus of the myosin essential light chain of vertebrate striated muscle. Biophys J 68(4 Suppl):112S–118S discussion 118S-119S

    PubMed  CAS  Google Scholar 

  • Szczesna D (2003) Regulatory light chains of striated muscle myosin. Structure, function and malfunction. Curr Drug Targets Cardiovasc Haematol Disord 3(2):187–197

    Article  PubMed  CAS  Google Scholar 

  • Teague WE Jr, Dobson GP (1992) Effect of temperature on the creatine kinase equilibrium. J Biol Chem 267(20):14084–14093

    PubMed  CAS  Google Scholar 

  • Timson DJ (2003) Fine tuning the myosin motor: the role of the essential light chain in striated muscle myosin. Biochimie 85(7):639–645

    Article  PubMed  CAS  Google Scholar 

  • Timson DJ, Trayer HR, Trayer IP (1998) The N-terminus of A1-type myosin essential light chains binds actin and modulates myosin motor function. Eur J Biochem 255(3):654–662

    Article  PubMed  CAS  Google Scholar 

  • Timson DJ, Trayer HR, Smith KJ, Trayer IP (1999) Size and charge requirements for kinetic modulation and actin binding by alkali 1-type myosin essential light chains. J Biol Chem 274(26):18271–18277

    Article  PubMed  CAS  Google Scholar 

  • Ushakov DS (2008) Structure and function of the essential light chain of myosin. Biofizika 53(6):950–955

    PubMed  CAS  Google Scholar 

  • Wannenburg T, Heijne GH, Geerdink JH, Van-Den-Dool HW, Janssen PM, DeTombe PP (2000) Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am J Physiol Heart Circ Physiol 279:H779–H790

    PubMed  CAS  Google Scholar 

  • Weeds AG, Lowey S (1971) Substructure of the myosin molecule II. The light chains of myosin. J Mol Biol 61(3):701–725

    Article  PubMed  CAS  Google Scholar 

  • Winstanley MA, Trayer HR, Trayer IP (1977) Role of the myosin light chains in binding to actin. FEBS Lett 77(2):239–242

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Kawai M (1994) Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 67(4):1655–1668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ana I. Rojas and Jingsheng Liang (University of Miami) for their excellent technical assistance with transgenic mice and cardiac muscle. This work was supported in part by grants from the National Institutes of Health HL070041 (M.K.); HL108343, HL071778 and HL090786 (D.S–C.); and the American Heart Association 10POST3420009 (P.M.). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Center for Research Resources or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Muthu, P., Szczesna-Cordary, D. et al. Characterizations of myosin essential light chain’s N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations. J Muscle Res Cell Motil 34, 93–105 (2013). https://doi.org/10.1007/s10974-013-9337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9337-x

Keywords

Navigation