Skip to main content
Log in

Protease Inhibitors in Improvement of Plant Resistance to Pathogens and Insects

  • Review and Experimantal Articles
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

This review concerns the possibility of using plant inhibitors of proteolytic enzymes to improve plant resistance to insects and phytopathogens. The main argument in favor of this approach is that protease inhibitors are widespread in plant tissues and highly active with respect to various proteases of insects, bacteria, and fungi. Genetic engineering yields promising results in the field, as recent studies demonstrate. The main drawbacks of the approach and ways to improve its efficiency are discussed. Still, the approach has several advantages over the standard methods and is ecologically safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Thomas M.B. 1999. Ecological approaches and the development of “truly integrated” pest management. Proc. Natl. Acad. Sci. USA. 96, 5944–5951.

    Article  PubMed  Google Scholar 

  2. Mosolov V.V., Valueva T.A. 1993. Ratitel’nye belkovye ingibitory proteoliticheskikh fermentov (Plant Protein Inhibitors of Proteolytic Enzymes). Moscow: VINITI.

    Google Scholar 

  3. Ryan C.A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and patogens. Annu. Rev. Phytopathol. 28, 425–449.

    Article  Google Scholar 

  4. Gatehouse A.M.R., Shi Y., Powell K.S., Brough C., Hilder V.A., Hamilton W.D.O., Newell C.A., Merry-weather A., Boulter D., Gatehouse J.A. 1993. Approaches to insect resistance using transgenic plants. Phil. Trans. R. Soc. London. 342, 279–286.

    Google Scholar 

  5. Edmonds H.S., Gatehouse L.N., Hilder V.A., Gatehouse J.A. 1996. The inhibitory effects of the cysteine protease inhibitor, oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm (Diabrotica undecimpunctata Howard). Entomol. Exp. Appl. 78, 83–94.

    Article  Google Scholar 

  6. Ortego F., Sanchez-Ramos I., Ruiz M., Castanera P. 2000. Characterization of proteases from a stored product mite Tyrophagus putrescentiae. Arch. Insect Biochem. Physiol. 43, 116–124.

    Article  PubMed  Google Scholar 

  7. Gatehouse A.M.R., Hilder V.A., Powell K.S., Boulter D., Gatehouse J.A. 1992. Potential of plant-derived genes in the genetic manipulation of crops for insect resistance. Proc. 8th Int. Symp. Insect-Plant Relationships. Dordrecht: Kluwer, pp. 221–234.

    Google Scholar 

  8. Konarev Al.V. 1987. Variation of trypsin-like proteinase inhibitors in wheat and related grain crops in connection with grain pest resistance. S-kh. Biol. 5, 17–24.

    Google Scholar 

  9. Orozco-Cardenas M., McGurl B., Ryan C. 1993. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc. Natl. Acad. Sci. USA. 90, 8273–8276.

    PubMed  Google Scholar 

  10. Hilder V.A., Gatehouse A.M.R., Sheerman S.E., Barker R.F., Boulter D. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature. 330, 160–163.

    Google Scholar 

  11. Hoffmann M.P., Zalom F.G., Wilson L.T., Smilanick J.M., Malyj L.D., Kiser J., Hilder V.A., Barnes W.M. 1992. Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis δ-endotoxin or cowpea trypsin inhibitor: efficacy against Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 85, 2516–2522.

    Google Scholar 

  12. Lecardonnell A., Chauvin L., Jouanin L. Beaujean A., Prevost G., Sangwan-Norreel B. 1999. Effects of the rice cystatin 1 expression in transgenic potato on Colorado potato beetle larvae. Plant Sci. 140, 71–79.

    Google Scholar 

  13. Hilder V.A., Boulter D.A. 1999. Genetic engineering of crop plants for insect resistance: A critical rewiew. Crop Prot. 18, 177–191.

    Article  Google Scholar 

  14. Gatehouse A.M.R., Davison G., Newell C.A., Merryweather A., Hamilton W.D.O., Burgess E.J., Gilbert R.J.C., Gatehouse J.A. 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea. Mol. Breeding. 3, 49–63.

    Article  Google Scholar 

  15. Graham J., Gordon S.C., Williamson B. 1996. Progress towards the use of transgenic plants as an aid to control soft fruit pests and diseases. In: Brighton Crop Protection Conference “Pests and Diseases”. Farnham, UK: BCPC, pp. 777–782.

    Google Scholar 

  16. Hao Y., Ao G. 1997. Transgenic cabbage plants harbouring cowpea trypsin inhibitor (CPTI) gene showed improved resistance to two major insect pests, Pieris rapae and Heliothis armigera. FASEB J. 11, A868.

    Google Scholar 

  17. Golmirizaie A., Zhang D.P., Nopo L., Newell C.A., Vera A., Cisneros F. 1997. Enhanced resistance to West Indian sweetpotato weevil (Euscepes postfaciatus) in transgenic “Jewel” sweetpotato with cowpea trypsin inhibitor and snowdrop lectin. Hortscience. 32, 435.

    Google Scholar 

  18. Xu D., Xue Q., McElroy D., Mawal Y., Hilder V.A., Wu R. 1996. Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice pests. Mol. Breeding. 2, 167–173.

    Article  Google Scholar 

  19. Yeh k., Liu M.I., Tuan S.J., Chen Y., Liu C., Kao S.S. 1997. Sweetpotato (Ipomoea batatus) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Rep. 16, 696–699.

    Article  Google Scholar 

  20. McManus M.T., White D.W.R., McGregor P.G. 1994. Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insects. Transgenic Res. 3, 50–58.

    Article  Google Scholar 

  21. Johnson R., Narvaez J., An G., Ryan C. 1989. Expression of proteinase inhibitors 1 and 11 in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA. 86, 9871–9875.

    PubMed  Google Scholar 

  22. Jongsma M.A., Bakker P.L., Peters J., Bosch D., Stiekema W.J. 1995. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of proteinase activity insensitive to inhibition. Proc. Natl. Acad. Sci. USA. 92, 8041–8045.

    PubMed  Google Scholar 

  23. Duan X., Li X., Xue Q., Abo el Saad M., Xu D., Wu R. 1996. Transgenic rice plants harboring an introduced potato proteinase inhibitor 11 gene are insect resistant. Nature Biotechnol. 14, 494–498.

    Google Scholar 

  24. Klopfenstein N.B., Allen K.K., Avila F.J., Heuchlin S.A., Martinez J., Carman R.C., Hall E.R., McNabb H.S. 1997. Proteinase inhibitor 11 gene in transgenic poplar: chemical and biological assays. Biomass Bioenergy. 12, 299–311.

    Article  Google Scholar 

  25. Falco M.C., Silva-Filho M.C. 2003. Expression of soybean proteinase inhibitors in transgenic sugarcane plants: Effects on natural defense against Diatraea saccharalis. Plant Physiol. Biochem. 41, 761–766.

    Article  Google Scholar 

  26. Leple J.C., Bonade-Bottino M., Augustin S., Pilate G., Le Tan V.D., Deplanque A., Cornu D., Jouanin L. 1995. Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breeding. 1, 319–328.

    Article  Google Scholar 

  27. Cloutier C., Jean C., Fournier M., Yelle S., Michaud D. 2000. Adult Colorado potato beetles, Leptinotarsa decemlineata, compensate for nutritional stress on oryzacystatin 1-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Arch. Insect Biochem. Physiol. 44, 69–81.

    Article  PubMed  Google Scholar 

  28. Alfonso-Rubi J., Ortego F., Castanera P., Carbonero P., Diaz I. 2003. Transgenic expression of trypsin inhibitor Cme from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res. 12, 23–31.

    Article  PubMed  Google Scholar 

  29. Michaud D., Nguyen-Quoc B., Vrain T.C., Fong D., Yelle S. 1996. Response of digestive proteinases from the Colorado potato beetle (Leptinotarsa decemlineata) and the black vine weevil (Otiorynchus sulcatus) to a recombinant form of human stefin A. Arch. Insect Biochem. Physiol. 31, 451–464.

    Article  PubMed  Google Scholar 

  30. Girard C., Le Metayer M., Bonade-Bottino M., Pham-Delegue M.H., Jouanin L. 1998. High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochem. Mol. Biol. 28, 229–237.

    Article  PubMed  Google Scholar 

  31. Mazumdar-Leighton S., Broadway R.M. 2001. Identification of six chymotrypsin cDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Insect Biochem. Mol. Biol. 31, 633–644.

    Article  PubMed  Google Scholar 

  32. Mazumdar-Leighton S., Broadway R.M. 2001. Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem. Mol. Biol. 31, 645–657.

    Article  PubMed  Google Scholar 

  33. Zhu-Salzman K., Koiwa H., Salzman R.A., Shade R.E., Ahn J.-E. 2003. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol. Biol. 12, 135–145.

    Article  PubMed  Google Scholar 

  34. De Leo F., Bonade-Bottino M., Ceci L.R., Gallerani R., Jouanin L. 1998. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol. 118, 997–1004.

    Article  PubMed  Google Scholar 

  35. Ahn J.-E., Salzman R.A., Braunagel S.C., Koiwa H., Zhu-Salzman K. 2004. Functional roles of specific bruchid protease isoforms in adaptation to a soybean protease inhibitor. Insect Mol. Biol. 13, 649–657.

    Article  PubMed  Google Scholar 

  36. Wu Y.R., Liewellyn D., Mathews A., Dennis E.S. 1997. Adaptation of Helicoverpa armigera (Lepidoptera: Noctuidae) to proteinase inhibitor expressed in transgenic tobacco. Mol. Breeding. 3, 371–380.

    Article  Google Scholar 

  37. Bouchard E., Cloutier C., Michaud D. 2003. Oryzacystatin 1 expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant. Mol. Ecol. 12, 2439–2446.

    Article  PubMed  Google Scholar 

  38. Thomas J.C., Adams D.G., Keppenne V.D., Wasmann C.C., Brown J.K., Kanost M.R., Bohnert H.J. 1995. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep. 14, 758–762.

    Article  Google Scholar 

  39. Outchkourov N.S., de Kogel W.J., Schuurman-de Bruin A., Abrahamson M., Jongsma M.A. 2004. Specific cysteine protease inhibitors act as deterrents of western flower thrips, Frankliniella occidentalis (Pergande), in transgenic potato. Plant Biotechnol. J. 2, 439–448.

    Article  Google Scholar 

  40. Outchkourov N.S., de Kogel W.J., Wiegers G.L., Abrahamson M., Jongsma M.A. 2004. Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trials. Plant Biotechnol. J. 2, 449–458.

    Article  Google Scholar 

  41. Boulter D., Edwards G.A., Gatehouse A.M.R., Gatehouse J.A., Hilder V.A. 1990. Additive protective effects of incorporating two different higher plant derived insect resistance genes in transgenic tobacco plants. Crop Prot. 9, 351–354.

    Article  Google Scholar 

  42. MacIntosh S.C., Kishore G.M., Perlak F.J., Marrone P.G., Stone T.B., Sims S.R., Fuchs R.L. 1990. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J. Agric. Food Chem. 38, 50–58.

    Article  Google Scholar 

  43. Brunelle F., Nguyen-Quoc B., Cloutier C., Michaud D. 1999. Protein hydrolysis by colorado potato beetle, Leptinotarsa decemlineata, digestive proteases: the catalytic role of cathepsin D. Arch. Insect Biochem. Physiol. 42, 88–98.

    Article  PubMed  Google Scholar 

  44. Koiwa H., Shade R.E., Zhu-Salzman K., D’Urzo M.P., Murdock L.L., Bressan R.A., Hasegawa P.M. 2000. A plant defensive cystatin (soyacystatin) targets cathepsin 1-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera). FEBS Lett. 471, 67–70.

    Article  PubMed  Google Scholar 

  45. Lorito M., Broadway R.M., Hayes C.K., Woo S.L., Noviello C., Williams D.L., Harman G.E. 1994. Proteinase inhibitors from plants as a novel class of fungicides. Mol. Plant-Microbe Interact. 7, 525–527.

    Google Scholar 

  46. Joshi B.N., Sainani M.N., Bastawade K.B., Gupta V.S., Ranjekar P.K. 1998. Cysteine protease inhibitor from pearl millet: A new class of antifungal protein. Biochem. Biophys. Res. Commun. 246, 382–387.

    Article  PubMed  Google Scholar 

  47. Dunaevsky Y.E., Gladysheva I.P., Pavlukova E.B., Beliakova G.A., Gladyshev D.P., Papisova A.I., Larionova N.I., Belozersky M.A. 1997. The anionic protease inhibitor BWI-1 from buckwheat seeds. Kinetic properties and possible biological role. Physiol. Plant. 101, 483–488.

    Article  Google Scholar 

  48. Dunaevsky Y.E., Pavlukova E.B., Beliakova G.A., Tsybina T.A., Gruban T.N., Belozersky M.A. 1998. Protease inhibitors in buckwheat seeds: comparison of anionic and cationic inhibitors. J. Plant Physiol. 152, 696–702.

    Google Scholar 

  49. Valueva T.A., Kladnitskaya G.V., Ilyinskaya L.I., Gerasimova N.G., Ozeretskovskaya O.L., Mosolov V.V. 1998. Chimotrypsin inhibitor in Phytophthora-infected potato tubers. Bioorg. Khim. 24, 346–349.

    Google Scholar 

  50. Valueva T.A., Revina T.A., Gvozdeva E.L., Gerasimova N.G., Ozeretskovskaya O.L. 2003. Role of proteinase inhibitors in potato protection. Bioorg. Khim. 29, 499–504.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 702–708.

Original Russian Text Copyright © 2005 by Dunaevsky, Elpidina, Vinokurov, Belozersky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunaevsky, Y.E., Elpidina, E.N., Vinokurov, K.S. et al. Protease Inhibitors in Improvement of Plant Resistance to Pathogens and Insects. Mol Biol 39, 608–613 (2005). https://doi.org/10.1007/s11008-005-0076-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0076-y

Key words

Navigation