Skip to main content

Advertisement

Log in

Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells

  • Original paper
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increased glucose flux through the hexosamine biosynthetic pathway (HBP) is known to affect the activity of a number of signal transduction pathways and lead to insulin resistance. Although widely studied in insulin responsive tissues, the effect of increased HBP activity on largely insulin unresponsive tissues, such as the brain, remains relatively unknown. Herein, we investigate the effects of increased HBP flux on Akt activation in a human astroglial cells line using glucosamine, a compound commonly used to mimic hyperglycemic conditions by increasing HBP flux. Cellular treatment with 8 mM glucosamine resulted in a 96.8% ± 24.6 increase in Akt phosphorylation after 5 h of treatment that remained elevated throughout the 9-h time course. Glucosamine treatment also resulted in modest increases in global levels of the O-GlcNAc protein modification. Increasing O-GlcNAc levels using the O-GlcNAcase inhibitor streptozotocin (STZ) also increased Akt phosphorylation by 96.8% ± 11.0 after only 3 h although for a shorter duration than glucosamine; however, the more potent O-GlcNAcase inhibitors O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) and 1,2-dideoxy-2′-propyl-α-d-glucopyranoso-[2,1-d]-Δ2′-thiazoline (NAGBT) failed to mimic the increases in phospho-Akt indicating that the Akt phosphorylation is not a result of increased O-GlcNAc protein modification. Further analysis indicated that this increased phosphorylation was also not due to increased osmotic stress and was not attenuated by N-acetylcysteine eliminating the potential role of oxidative stress in the observed phospho-Akt increases. Glucosamine treatment, but not STZ treatment, did correlate with a large increase in the expression of the endoplasmic reticulum (ER) stress marker GRP 78. Altogether, these results indicate that increased HBP flux in human astroglial cells results in a rapid, short-term phosphorylation of Akt that is likely a result of increased ER stress. The mechanism by which STZ increases Akt phosphorylation, however, remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

O-GlcNAc:

β-O-linked N-acetylglucosamine

STZ:

Streptozotocin

PUGNAc:

O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate

NAGBT:

1,2-dideoxy-2′-propyl-α-d-glucopyranoso-[2,1-d]-Δ2′-thiazoline

ER:

Endoplasmic reticulum stress

References

  1. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  PubMed  CAS  Google Scholar 

  2. McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC, Hanover JA (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci USA 99:10695–10699

    Article  PubMed  CAS  Google Scholar 

  3. Rossetti L (2000) Perspective: hexosamines and nutrient sensing. Endocrinology 141:1922–1925

    Article  PubMed  CAS  Google Scholar 

  4. Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266:4706–4712

    PubMed  CAS  Google Scholar 

  5. Daniels MC, McClain DA, Crook ED (2000) Transcriptional regulation of transforming growth factor beta1 by glucose: investigation into the role of the hexosamine biosynthesis pathway. Am J Med Sci 319:138–142

    Article  PubMed  CAS  Google Scholar 

  6. Filippis C, Filippis A, Clark S, Proietto J (2002) Activation of PI 3-kinase by the hexosamine biosynthesis pathway. Mol Cell Endocrinol 194:29–35

    Article  PubMed  CAS  Google Scholar 

  7. Kline CL, Schrufer TL, Jefferson LS, Kimball SR (2005) Glucosamine-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is mediated by the protein kinase R-like endoplasmic-reticulum associated kinase. Int J Biochem Cell Biol 38:1004–1014

    Article  PubMed  Google Scholar 

  8. Shankar RR, Zhu JS, Baron AD (1998) Glucosamine infusion in rats mimics the beta-cell dysfunction of non-insulin-dependent diabetes mellitus. Metabolism 47:573–577

    Article  PubMed  CAS  Google Scholar 

  9. Singh LP, Cook ED (2000) Hexosamine regulation of glucose-mediated laminin synthesis in mesangial cells involves protein kinases A and C. Am J Physiol Renal Physiol 279:F646–F654

    PubMed  CAS  Google Scholar 

  10. Singh LP, Crook ED (2000) The effects of glucose and the hexosamine biosynthesis pathway on glycogen synthase kinase-3 and other protein kinases that regulate glycogen synthase activity. J Invest Med 48:251–258

    CAS  Google Scholar 

  11. Fujita T, Furukawa S, Morita K, Ishihara T, Shiotani M, Matsushita Y, Matsuda M, Shimomura I (2005) Glucosamine induces lipid accumulation and adipogenic change in C2C12 myoblasts. Biochem Biophys Res Commun 328:369–374

    Article  PubMed  CAS  Google Scholar 

  12. Marshall S, Nadeau O, Yamasaki K (2005) Glucosamine-induced activation of glycogen biosynthesis in isolated adipocytes. Evidence for a rapid allosteric control mechanism within the hexosamine biosynthesis pathway. J Biol Chem 280:11018–11024

    Article  PubMed  CAS  Google Scholar 

  13. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  14. White MF (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182:3–11

    Article  PubMed  CAS  Google Scholar 

  15. Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J et al (1992) Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J␣11:3469–3479

    PubMed  CAS  Google Scholar 

  16. Myers MG Jr, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci USA 89:10350–10354

    Article  PubMed  CAS  Google Scholar 

  17. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272:31515–31524

    Article  PubMed  CAS  Google Scholar 

  18. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    Article  PubMed  CAS  Google Scholar 

  19. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  20. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  21. Andreozzi F, D’Alessandris C, Federici M, Laratta E, Del Guerra S, Del Prato S, Marchetti P, Lauro R, Perticone F, Sesti G (2004) Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic beta-cells. Endocrinology 145:2845–2857

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura M, Barber AJ, Antonetti DA, LaNoue KF, Robinson KA, Buse MG, Gardner TW (2001) Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem 276:43748–43755

    Article  PubMed  CAS  Google Scholar 

  23. Vosseller K, Wells L, Lane MD, Hart GW (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 99:5313–5318

    Article  PubMed  CAS  Google Scholar 

  24. Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ, Biessels GJ (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113

    Article  PubMed  CAS  Google Scholar 

  25. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549

    Article  PubMed  CAS  Google Scholar 

  26. Parkes M, White KG (2000) Glucose attenuation of memory impairments. Behav Neurosci 114:307–319

    Article  PubMed  CAS  Google Scholar 

  27. Clodfelder-Miller B, De Sarno P, Zmijewska AA, Song L, Jope RS (2005) Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J␣Biol Chem 280:39723–39731

    Article  PubMed  CAS  Google Scholar 

  28. Corson TW, Woo KK, Li PP, Warsh JJ (2004) Cell-type specific regulation of calreticulin and Bcl-2 expression by mood stabilizer drugs. Eur Neuropsychopharmacol 14:143–150

    Article  PubMed  CAS  Google Scholar 

  29. Major EO, Miller AE, Mourrain P, Traub RG, de Widt E, Sever J (1985) Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc Natl Acad Sci USA 82:1257–1261

    Article  PubMed  CAS  Google Scholar 

  30. Hansson E (1984) Cellular composition of a cerebral hemisphere primary culture. Neurochem Res 9:153–172

    Article  PubMed  CAS  Google Scholar 

  31. Chow J, Ogunshola O, Fan SY, Li Y, Ment LR, Madri JA (2001) Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Res Dev Brain Res 130:123–132

    Article  PubMed  CAS  Google Scholar 

  32. Barres BA (1991) Glial ion channels. Curr Opin Neurobiol 1:354–359

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein GW (1988) Endothelial cell–astrocyte interactions. A cellular model of the blood-brain barrier. Ann NY Acad Sci 529:31–39

    Article  PubMed  CAS  Google Scholar 

  34. Qutub AA, Hunt CA (2005) Glucose transport to the brain: a systems model. Brain Res Brain Res Rev 49:595–617

    Article  PubMed  CAS  Google Scholar 

  35. Matthews JA, Acevedo-Duncan M, Potter RL (2005) Selective decrease of membrane-associated PKC-alpha and PKC-epsilon in response to elevated intracellular O-GlcNAc levels in transformed human glial cells. Biochim Biophys Acta 1743:305–315

    Article  PubMed  CAS  Google Scholar 

  36. Park SY, Ryu J, Lee W (2005) O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med 37:220–229

    PubMed  CAS  Google Scholar 

  37. Gao Y, Parker GJ, Hart GW (2000) Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch Biochem Biophys 383:296–302

    Article  PubMed  CAS  Google Scholar 

  38. Haltiwanger RS, Grove K, Philipsberg GA (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N- acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem 273:3611–3617

    Article  PubMed  CAS  Google Scholar 

  39. Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE (2001) The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase. Biochem J 356:31–41

    Article  PubMed  CAS  Google Scholar 

  40. Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 280:25313–25322

    Article  PubMed  CAS  Google Scholar 

  41. Majumdar G, Harmon A, Candelaria R, Martinez-Hernandez A, Raghow R, Solomon SS (2003) O-glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon. Am J Physiol Endocrinol Metab 285:E584–591

    PubMed  CAS  Google Scholar 

  42. Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF, Lavandero S (2003) Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J Biol Chem 278:38484–38494

    Article  PubMed  CAS  Google Scholar 

  43. Pastukh V, Ricci C, Solodushko V, Mozaffari M, Schaffer SW (2005) Contribution of the PI 3-kinase/Akt survival pathway toward osmotic preconditioning. Mol Cell Biochem 269:59–67

    Article  PubMed  CAS  Google Scholar 

  44. Terada Y, Inoshita S, Hanada S, Shimamura H, Kuwahara M, Ogawa W, Kasuga M, Sasaki S, Marumo F (2001) Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells. Kidney Int 60:553–567

    Article  PubMed  CAS  Google Scholar 

  45. Shaw M, Cohen P, Alessi DR (1998) The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J 336(Pt 1):241–246

    PubMed  CAS  Google Scholar 

  46. Tapodi A, Debreceni B, Hanto K, Bognar Z, Wittmann I, Gallyas F Jr, Varbiro G, Sumegi B (2005) Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J Biol Chem 280:35767–35775

    Article  PubMed  CAS  Google Scholar 

  47. Kaneto H, Xu G, Song KH, Suzuma K, Bonner-Weir S, Sharma A, Weir GC (2001) Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 276:31099–31104

    Article  PubMed  CAS  Google Scholar 

  48. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi G (2005) Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J␣Endocrinol 187:37–44

    Article  PubMed  CAS  Google Scholar 

  49. Wohaieb SA, Godin DV (1987) Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes 36:1014–1018

    Article  PubMed  CAS  Google Scholar 

  50. Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, Salio M, Savino C, Melucci S, Santangelo F, Scanziani E, Masson S, Ghezzi P, Latini R (2004) Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol 37:959–968

    Article  PubMed  CAS  Google Scholar 

  51. Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420–49429

    Article  PubMed  CAS  Google Scholar 

  52. Lin HY, Masso-Welch P, Di YP, Cai JW, Shen JW, Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4:1109–1119

    PubMed  CAS  Google Scholar 

  53. Filippis A, Clark S, Proietto J (1997) Increased flux through the hexosamine biosynthesis pathway inhibits glucose transport acutely by activation of protein kinase C. Biochem J␣324(Pt 3):981–985

    PubMed  CAS  Google Scholar 

  54. Nelson BA, Robinson KA, Buse MG (2002) Defective Akt activation is associated with glucose—but not glucosamine-induced insulin resistance. Am J Physiol Endocrinol Metab 282:E497–506

    PubMed  CAS  Google Scholar 

  55. Singh LP, Gennerette D, Simmons S, Crook ED (2001) Glucose-induced insulin resistance of phosphatidylinositol 3′-OH kinase and AKT/PKB is mediated by the hexosamine biosynthesis pathway. J Diabetes Complications 15:88–96

    Article  PubMed  CAS  Google Scholar 

  56. Datta K, Bellacosa A, Chan TO, Tsichlis PN (1996) Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 271:30835–30839

    Article  PubMed  CAS  Google Scholar 

  57. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–477

    Article  PubMed  CAS  Google Scholar 

  58. Miki T, Sakaue M, Kasuga M (2002) In vivo administration of glucosamine inhibited phosphatidylinositol 3-kinase activity without affecting tyrosine phosphorylation of the insulin receptor or insulin receptor substrate in rat adipocytes. Kobe J Med Sci 48:105–114

    PubMed  CAS  Google Scholar 

  59. Marshall S, Nadeau O, Yamasaki K (2004) Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J␣Biol Chem 279:35313–35319

    Article  PubMed  CAS  Google Scholar 

  60. Dong DL, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J Biol Chem 269:19321–19330

    PubMed  CAS  Google Scholar 

  61. Akimoto Y, Hart GW, Hirano H, Kawakami H (2005) O-GlcNAc modification of nucleocytoplasmic proteins and diabetes. Med Mol Morphol 38:84–91

    Article  PubMed  CAS  Google Scholar 

  62. Wells L, Vosseller K, Hart GW (2003) A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol Life Sci 60:222–228

    Article  PubMed  CAS  Google Scholar 

  63. Musicki B, Kramer MF, Becker RE, Burnett AL (2005) Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 102:11870–11875

    Article  PubMed  CAS  Google Scholar 

  64. Horal M, Zhang Z, Stanton R, Virkamaki A, Loeken MR (2004) Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res A Clin Mol Teratol 70:519–527

    Article  PubMed  CAS  Google Scholar 

  65. Xia Z, Nagareddy PR, Guo Z, Zhang W, McNeill JH (2006) Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats. Free Radic Res 40:175–184

    Article  PubMed  CAS  Google Scholar 

  66. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    PubMed  CAS  Google Scholar 

  67. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, Ozawa K, Ogawa S, Hori M, Yamasaki Y, Matsuhisa M (2005) Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 280:847–851

    PubMed  CAS  Google Scholar 

  68. Werstuck GH, Khan MI, Femia G, Kim AJ, Tedesco V, Trigatti B, Shi Y (2006) Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model. Diabetes 55:93–101

    Article  PubMed  CAS  Google Scholar 

  69. Kim AJ, Shi Y, Austin RC, Werstuck GH (2005) Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118:89–99

    Article  PubMed  CAS  Google Scholar 

  70. Qiu W, Kohen-Avramoglu R, Mhapsekar S, Tsai J, Austin RC, Adeli K (2005) Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation. Arterioscler Thromb Vasc Biol 25:571–577

    Article  PubMed  CAS  Google Scholar 

  71. Hresko RC, Heimberg H, Chi MM, Mueckler M (1998) Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. J Biol Chem 273:20658–20668

    Article  PubMed  CAS  Google Scholar 

  72. Kumar Y, Tatu U (2000) Induced hsp70 is in small, cytoplasmic complexes in a cell culture model of renal ischemia: a comparative study with heat shock. Cell Stress Chaperones 5:314–327

    Article  PubMed  CAS  Google Scholar 

  73. Lenk SE, Bhat D, Blakeney W, Dunn WA Jr (1992) Effects of streptozotocin-induced diabetes on rough endoplasmic reticulum and lysosomes of rat liver. Am J Physiol 263:E856–862

    PubMed  CAS  Google Scholar 

  74. Kruglikov I, Gryshchenko O, Shutov L, Kostyuk E, Kostyuk P, Voitenko N (2004) Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons. Pflugers Arch 448:395–401

    Article  PubMed  CAS  Google Scholar 

  75. Kawakami Y, Nishimoto H, Kitaura J, Maeda-Yamamoto M, Kato RM, Littman DR, Leitges M, Rawlings DJ, Kawakami T (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279:47720–47725

    Article  PubMed  CAS  Google Scholar 

  76. Perez-Garcia MJ, Cena V, de Pablo Y, Llovera M, Comella JX, Soler RM (2004) Glial cell line-derived neurotrophic factor increases intracellular calcium concentration. Role of calcium/calmodulin in the activation of the phosphatidylinositol 3-kinase pathway. J Biol Chem 279:6132–6142

    Article  PubMed  CAS  Google Scholar 

  77. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  PubMed  CAS  Google Scholar 

  78. Kohout SC, Corbalan-Garcia S, Torrecillas A, Gomez-Fernandez JC, Falke JJ (2002) C2 domains of protein kinase C isoforms alpha, beta, and gamma: activation parameters and calcium stoichiometries of the membrane-bound state. Biochemistry 41:11411–11424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David J. Vocadlo at Simon Fraser University in British Columbia, Canada (Department of Chemistry) for the kind gift of NAGBT and helpful discussions and Dr. Gerald Hart at Johns Hopkins University School of Medicine (Department of Biological Chemistry) for the gift of CTD 110.6 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Potter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, J.A., Belof, J.L., Acevedo-Duncan, M. et al. Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells. Mol Cell Biochem 298, 109–123 (2007). https://doi.org/10.1007/s11010-006-9358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9358-5

Keywords

Navigation