Skip to main content
Log in

Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: evidences for its involvement in DNA double-strand break repair

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5′ → 3′ exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases. A variant of Trm2p, Trm2p(ctΔ76aa) lacking 76 amino acids at the C-terminus retained nuclease activities but not the methyl transferase activity. Both the native and the variant exhibited sensitivity to the endo-exonuclease inhibitor pentamidine. The Saccharomyces cerevisiae trm2(Δ232-1920nt) mutant (containing only the first 231 nucleotides of the TRM2 gene) displayed low sensitivity to methyl methane sulfonate (MMS) and suppressed the MMS sensitivity of rad52 mutants in trm2(Δ232-1920nt)rad52 double mutants. The deletion of KU80, in trm2(Δ232-1920nt) mutant background displayed higher MMS sensitivity supporting the view of the possible role of Trm2p in a competing repair pathway separate from NHEJ. In addition, trm2 exo1 double mutants were synergistically more sensitive to MMS and ionizing radiation than either of the single mutant suggesting that TRM2 and EXO1 can functionally complement each other. However, the C-terminal portion, required for its methyl transferase activity was found not important for DNA repair. These results propose an important role for TRM2 in DNA repair with a potential involvement of its nuclease function in homologous recombination based repair of DNA DSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haber JE (2000) Partners and pathways in repairing a double-strand break. Trends Genet 16:259–264

    Article  PubMed  CAS  Google Scholar 

  2. Johnson RD, Jasin M (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29:196–201

    Article  PubMed  CAS  Google Scholar 

  3. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. Embo J 19:3398–3407

    Article  PubMed  CAS  Google Scholar 

  4. Kanaar R, Hoeijmakers JH, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8:483–489

    Article  PubMed  CAS  Google Scholar 

  5. Thompson LH, Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477:131–153

    PubMed  CAS  Google Scholar 

  6. Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78

    PubMed  CAS  Google Scholar 

  7. Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12:563–575

    PubMed  CAS  Google Scholar 

  8. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  9. Stahl F (1996) Meiotic recombination in yeast: coronation of the double-strand-break repair model. Cell 87:965–968

    Article  PubMed  CAS  Google Scholar 

  10. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  11. Bressan DA, Baxter BK, Petrini JH (1999) The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 19:7681–7687

    PubMed  CAS  Google Scholar 

  12. Wyman C, Ristic D, Kanaar R (2004) Homologous recombination-mediated double-strand break repair. DNA Repair (Amst) 3:827–833

    Article  CAS  Google Scholar 

  13. Paull TT, Gellert M (2000) A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc Natl Acad Sci USA 97:6409–6414

    Article  PubMed  CAS  Google Scholar 

  14. Paull TT, Gellert M (1998) The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1:969–979

    Article  PubMed  CAS  Google Scholar 

  15. Petrini JH, Bressan DA, Yao MS (1997) The RAD52 epistasis group in mammalian double strand break repair. Semin Immunol 9:181–188

    Article  PubMed  CAS  Google Scholar 

  16. Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13:458–462

    Article  PubMed  CAS  Google Scholar 

  17. Tsubouchi H, Ogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell 11:2221–2233

    PubMed  CAS  Google Scholar 

  18. Chow TY, Perkins EL, Resnick MA (1992) Yeast RNC1 encodes a chimeric protein, RhoNUC, with a human rho motif and deoxyribonuclease activity. Nucleic Acids Res 20:5215–5221

    Article  PubMed  CAS  Google Scholar 

  19. Chow TY, Resnick MA (1987) Purification and characterization of an endo-exonuclease from Saccharomyces cerevisiae that is influenced by the RAD52 gene. J Biol Chem 262:17659–17667

    PubMed  CAS  Google Scholar 

  20. Fraser MJ, Chow TY-K, Kafer E (1980) Nucleases and their control in wild-type and nuh mutants of neurospora. In: Generoso WM, Shelby MD, Serres FJd (eds) DNA repair and mutagenesis in eucaryotes. Plenum, New York, pp 109–137

    Google Scholar 

  21. Resnick MA, Sugino A, Nitiss J, Chow T (1984) DNA polymerases, deoxyribonucleases, and recombination during meiosis in Saccharomyces cerevisiae. Mol Cell Biol 4:2811–2817

    PubMed  CAS  Google Scholar 

  22. Sadekova S, Chow TY (1996) Over-expression of the NUD1-coded endo-exonuclease in Saccharomyces cerevisiae enhances DNA recombination and repair. Curr Genet 30:50–55

    Article  PubMed  CAS  Google Scholar 

  23. Semionov A, Cournoyer D, Chow TY (1999) The effect of the Saccharomyces cerevisiae endo-exonuclease NUD1 gene expression on the resistance of HeLa cells to DNA-damaging agents. Mutat Res 433:169–181

    PubMed  CAS  Google Scholar 

  24. Nordlund ME, Johansson JO, von Pawel-Rammingen U, Bystrom AS (2000) Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae. RNA 6:844–860

    Article  PubMed  CAS  Google Scholar 

  25. Johansson MJ, Bystrom AS (2002) Dual function of the tRNA(m(5)U54)methyltransferase in tRNA maturation. RNA 8:324–335

    Article  PubMed  CAS  Google Scholar 

  26. Boulton SJ, Jackson SP (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24:4639–4648

    Article  PubMed  CAS  Google Scholar 

  27. Milne GT, Jin S, Shannon KB, Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol 16:4189–4198

    PubMed  CAS  Google Scholar 

  28. Siede W, Friedl AA, Dianova I, Eckardt-Schupp F, Friedberg EC (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142:91–102

    PubMed  CAS  Google Scholar 

  29. Game J (1983) Radiation sensitive mutants and repair in yeast. In: Spencer JFT SD, Smith A (eds) Yeast genetics, fundamental and applied aspects. Springer-Verlag New York, New York, pp.1093–1099

    Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  31. Chow TY-K, Alaoui-Jamali JA, Yeh C, Yuen L, Griller D (2004) The DNA Double-Stranded Break Repair Protein Endo-exonuclease as a Therapeutic Target for Cancer. Mol Cancer Ther 3:911–919

    Article  PubMed  CAS  Google Scholar 

  32. Rose DR, Winston F, Hieter P (1990) Methods in yeast genetics-a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  33. Brendel M, Haynes RH (1973) Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Mol Gen Genet 125:197–216

    Article  PubMed  CAS  Google Scholar 

  34. Asefa B, Kauler P, Cournoyer D, Lehnert S, Chow TY (1998) Genetic analysis of the yeast NUD1 endo-exonuclease: a role in the repair of DNA double-strand breaks. Curr Gene 34:360–367

    Article  CAS  Google Scholar 

  35. Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T, Ohta K (1998) Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. Embo J 17:6412–6425

    Article  PubMed  CAS  Google Scholar 

  36. Fraser MJ, Koa H, Chow TY (1990) Neurospora endo-exonuclease is immunochemically related to the recC gene product of Escherichia coli. J Bacteriol 172:507–510

    PubMed  CAS  Google Scholar 

  37. Fraser MJ, Chow TY, Cohen H, Koa H (1986) An immunochemical study of Neurospora nucleases. Biochem Cell Biol 64:106–116

    PubMed  CAS  Google Scholar 

  38. Hildebrandt E, Boykin DW, Kumar A, Tidwell RR, Dykstra CC (1998) Identification and characterization of an endo/exonuclease in Pneumocystis carinii that is inhibited by dicationic diarylfurans with efficacy against Pneumocystis pneumonia. J Eukaryot Microbiol 45:112–121

    Article  PubMed  CAS  Google Scholar 

  39. Chow TY Resnick M (1988) An endo-exonuclease activity of yeast that requires a functional RAD52 gene. Mol Gen Genet 211:41–48

    Article  Google Scholar 

  40. Greene A, Snipe J, Gordenin D, Resnick M (1999) Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum Mol Genet 8:2263–2273

    Article  PubMed  CAS  Google Scholar 

  41. Hopper KA, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162–180

    Article  PubMed  CAS  Google Scholar 

  42. Chow TY, Fraser MJ (1983) Purification and properties of single strand DNA-binding endo- exonuclease of Neurospora crassa. J Biol Chem 258:12010–12018

    PubMed  CAS  Google Scholar 

  43. Koa H, Fraser MJ, Kafer E (1990) Endo-exonuclease of Aspergillus nidulans. Biochem Cell Biol 68:387–392

    Article  PubMed  CAS  Google Scholar 

  44. Choy JS, Kron SJ (2002) NuA4 Subunit Yng2 Function in Intra-S-Phase DNA Damage Response. Mol Cell Biol 22:8215–8225

    Article  PubMed  CAS  Google Scholar 

  45. Said MR, Begley TJ, Oppenheim AV, Lauffenburger DA, Samson LD (2004) Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101:18006–18011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tom Wilson and Dr. Alexandre Semionov and Jean-Philip Belzile for helpful discussion and review of this article, Mike Fasulo for providing the plasmid construct pGHOT, and Paul Kauler for his technical assistance. This work was supported by grants from the National Cancer Institute of Canada with funds from the Canadian Cancer Society and the Cancer Research Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Y-K Chow.

Additional information

The authors S. A. Choudhury and B. Asefa contributed equally to the work and manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, S.A., Asefa, B., Webb, A. et al. Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: evidences for its involvement in DNA double-strand break repair. Mol Cell Biochem 300, 215–226 (2007). https://doi.org/10.1007/s11010-006-9386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9386-1

Keywords

Navigation