Skip to main content
Log in

Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and Monocyte Chemoattractant Protein (MCP)-1 co-regulation has been found in endotoxin-activated macrophages. Kupffer cells (KC) are a main source of soluble-mediators production in liver abnormalities. We investigated in vitro similar co-regulation of NO and MCP-1 production in rat activated KC. Isolated rat KC were cultured in the presence of 1 μg/ml LPS and various concentrations of Wortmannin (0–300 nM), L-NAME (0–500 μM) or MCP-1 (0–100 ng/ml). Production of MCP-1 and NO were measured in supernatants, by ELISA and a modification of the Griess reaction, respectively. Growth arrested KC, stimulated with vehicle, produced a basal amount of NO and MCP-1. In the presence of LPS, cultured KC secreted significantly (P < 0.01) increased amounts of MCP-1 and NO. Pre-treatment of KC with various concentrations of L-NAME significantly (P < 0.05) reduced the LPS-induced secretion of NO in a concentration dependent manner, but the MCP-1 production remained unaffected. Pre-treatment with Wortmannin significantly (P < 0.05) inhibited LPS-induced secretion of MCP-1 and NO in a concentration dependent manner. Linear regression analysis revealed a positive correlation between MCP-1 and NO in the LPS (r = 0.59171, P < 0.0001) and Wortmannin (r = 0.9215, P = 0.009) treated groups, but not in the L-NAME (r = −0.08513, P = 0.873). Incubation of KC with various concentrations of MCP-1 did not increase the NO production. These results indicate that KC might be the main source of NO and MCP-1 production in liver disorders, probably through the induction of PI3-kinase(s) and without any co-regulation between these molecules, which might represent two independent immunoregulatory pathways in the role of KC in hepatic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420

    PubMed  CAS  Google Scholar 

  2. Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G265

    PubMed  CAS  Google Scholar 

  3. Liu P, McGuire GM, Fisher MA, Farhood A, Smith CW, Jaeschke H (1995) Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock 3:56–62. doi:10.1097/00024382-199506000-00008

    Article  PubMed  CAS  Google Scholar 

  4. Han DW (2002) Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol 8:961–965

    PubMed  Google Scholar 

  5. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  6. Rockey DC, Shah V (2004) Nitric oxide biology and the liver: report of an AASLD research workshop. Hepatology 39:250–257. doi:10.1002/hep.20034

    Article  PubMed  Google Scholar 

  7. Sass G, Koerber K, Bang R, Guehring H, Tiegs G (2001) Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest 107:439–447. doi:10.1172/JCI10613

    Article  PubMed  CAS  Google Scholar 

  8. Nadler EP, Dickinson EC, Beer-Stolz D, Alber SM, Watkins SC, Pratt DW et al (2001) Scavenging nitric oxide reduces hepatocellular injury after endotoxin challenge. Am J Physiol Gastrointest Liver Physiol 281:G173–G181

    PubMed  CAS  Google Scholar 

  9. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621. doi:10.1056/NEJMra052723

    Article  PubMed  CAS  Google Scholar 

  10. Bone-Larson CL, Simpson KJ, Colletti LM, Lukacs NW, Chen SC, Lira S et al (2000) The role of chemokines in the immunopathology of the liver. Immunol Rev 177:8–20. doi:10.1034/j.1600-065X.2000.17703.x

    Article  PubMed  CAS  Google Scholar 

  11. Marra F (2002) Chemokines in liver inflammation and fibrosis. Front Biosci 7:d1899–d1914

    Article  PubMed  CAS  Google Scholar 

  12. Duryee MJ, Klassen LW, Freeman TL, Willis MS, Tuma DJ, Thiele GM (2004) Lipopolysaccharide is a cofactor for malondialdehyde-acetaldehyde adduct-mediated cytokine/chemokine release by rat sinusoidal liver endothelial and Kupffer cells. Alcohol Clin Exp Res 28:1931–1938. doi:10.1097/01.ALC.0000148115.90045.C5

    Article  PubMed  CAS  Google Scholar 

  13. Hildebrand F, Hubbard WJ, Choudhry MA, Frink M, Pape HC, Kunkel SL et al (2006) Kupffer cells and their mediators: the culprits in producing distant organ damage after trauma-hemorrhage. Am J Pathol 169:784–794. doi:10.2353/ajpath.2006.060010

    Article  PubMed  CAS  Google Scholar 

  14. Tukov FF, Maddox JF, Amacher DE, Bobrowski WF, Roth RA, Ganey PE (2006) Modeling inflammation-drug interactions in vitro: a rat Kupffer cell-hepatocyte coculture system. Toxicol In Vitro 20:1488–1499

    Article  PubMed  CAS  Google Scholar 

  15. Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, Choudhry MA et al (2007) The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol 210:667–675. doi:10.1002/jcp.20860

    Article  PubMed  CAS  Google Scholar 

  16. Valatas V, Kolios G, Manousou P, Notas G, Xidakis C, Diamantis I et al (2004) Octreotide regulates CC but not CXC LPS-induced chemokine secretion in rat Kupffer cells. Br J Pharmacol 141:477–487. doi:10.1038/sj.bjp.0705633

    Article  PubMed  CAS  Google Scholar 

  17. Guo HT, Cai CQ, Schroeder RA, Kuo PC (2002) Nitric oxide is necessary for CC-class chemokine expression in endotoxin-stimulated ANA-1 murine macrophages. Immunol Lett 80:21–26. doi:10.1016/S0165-2478(01)00284-X

    Article  PubMed  CAS  Google Scholar 

  18. Murao K, Ohyama T, Imachi H, Ishida T, Cao WM, Namihira H et al (2000) TNF-alpha stimulation of MCP-1 expression is mediated by the Akt/PKB signal transduction pathway in vascular endothelial cells. Biochem Biophys Res Commun 276:791–796. doi:10.1006/bbrc.2000.3497

    Article  PubMed  CAS  Google Scholar 

  19. Biswas SK, Sodhi A, Paul S (2001) Regulation of nitric oxide production by murine peritoneal macrophages treated in vitro with chemokine monocyte chemoattractant protein 1. Nitric Oxide 5:566–579. doi:10.1006/niox.2001.0370

    Article  PubMed  CAS  Google Scholar 

  20. Okuma T, Terasaki Y, Sakashita N, Kaikita K, Kobayashi H, Hayasaki T et al (2006) MCP-1/CCR2 signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxide production. Int J Exp Pathol 87:475–483. doi:10.1111/j.1365-2613.2006.00502.x

    Article  PubMed  CAS  Google Scholar 

  21. Valatas V, Xidakis C, Roumpaki H, Kolios G, Kouroumalis EA (2003) Isolation of rat Kupffer cells: a combined methodology for highly purified primary cultures. Cell Biol Int 27:67–73. doi:10.1016/S1065-6995(02)00249-4

    Article  PubMed  CAS  Google Scholar 

  22. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902. doi:10.1126/science.1281928

    Article  PubMed  CAS  Google Scholar 

  23. Matrella E, Valatas V, Notas G, Roumpaki H, Xidakis C, Hadzidakis A et al (2001) Bolus somatostatin but not octreotide reduces hepatic sinusoidal pressure by a NO-independent mechanism in chronic liver disease. Aliment Pharmacol Ther 15:857–864. doi:10.1046/j.1365-2036.2001.00996.x

    Article  PubMed  CAS  Google Scholar 

  24. Valatas V, Kolios G, Manousou P, Xidakis C, Notas G, Ljumovic D et al (2004) Secretion of inflammatory mediators by isolated rat Kupffer cells: the effect of octreotide. Regul Pept 120:215–225. doi:10.1016/j.regpep.2004.03.009

    Article  PubMed  CAS  Google Scholar 

  25. Stevanin TM, Laver JR, Poole RK, Moir JW, Read RC (2007) Metabolism of nitric oxide by Neisseria meningitidis modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect 9:981–987. doi:10.1016/j.micinf.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  26. Muhl H, Chang JH, Huwiler A, Bosmann M, Paulukat J, Ninic R et al (2000) Nitric oxide augments release of chemokines from monocytic U937 cells: modulation by anti-inflammatory pathways. Free Radic Biol Med 29:969–980. doi:10.1016/S0891-5849(00)00389-0

    Article  PubMed  CAS  Google Scholar 

  27. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A et al (2007) Nitric oxide donor upregulation of SDF1/CXCR4 enhances BMSC, migration into ischemic brain after stroke. Stem Cells 25:2777–2785. doi:10.1634/stemcells.2007-0169

    Article  PubMed  CAS  Google Scholar 

  28. Trifilieff A, Fujitani Y, Mentz F, Dugas B, Fuentes M, Bertrand C (2000) Inducible nitric oxide synthase inhibitors suppress airway inflammation in mice through down-regulation of chemokine expression. J Immunol 165:1526–1533

    PubMed  CAS  Google Scholar 

  29. Marion R, Coeffier M, Lemoulan S, Gargala G, Ducrotte P, Dechelotte P (2005) L-Arginine modulates CXC chemokines in the human intestinal epithelial cell line HCT-8 by the NO pathway. Biochimie 87:1048–1055. doi:10.1016/j.biochi.2005.06.009

    Article  PubMed  CAS  Google Scholar 

  30. Martinez-Mier G, Toledo-Pereyra LH, McDuffie JE, Warner RL, Hsiao C, Stapleton SR et al (2002) Exogenous nitric oxide downregulates MIP-2 and MIP-1alpha chemokines and MAPK p44/42 after ischemia and reperfusion of the rat kidney. J Invest Surg 15:287–296. doi:10.1080/08941930290086083

    Article  PubMed  Google Scholar 

  31. Desai A, Miller MJ, Huang X, Warren JS (2003) Nitric oxide modulates MCP-1 expression in endothelial cells: implications for the pathogenesis of pulmonary granulomatous vasculitis. Inflammation 27:213–223. doi:10.1023/A:1025036530605

    Article  PubMed  CAS  Google Scholar 

  32. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP (1997) Nitric oxide regulates monocyte chemotactic protein-1. Circulation 96:934–940

    PubMed  CAS  Google Scholar 

  33. Hayasaki T, Kaikita K, Okuma T, Yamamoto E, Kuziel WA, Ogawa H et al (2006) CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ J 70:342–351. doi:10.1253/circj.70.342

    Article  PubMed  CAS  Google Scholar 

  34. Kolios G, Wright KL, Jordan NJ, Leithead BJ, Robertson DAF, Westwick J (1999) C-X-C and C-C chemokine expression and secretion by the human colonic epithelial cell line, HT-29: differential effect of T-lymphocyte derived cytokines. Eur J Immunol 29:530–536. doi:10.1002/(SICI)1521-4141(199902)29:02<530::AID-IMMU530>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  35. Kim YH, Choi KH, Park JW, Kwon TK (2005) LY294002 inhibits LPS-induced NO production through a inhibition of NF-kappaB activation: independent mechanism of phosphatidylinositol 3-kinase. Immunol Lett 99:45–50. doi:10.1016/j.imlet.2004.12.007

    Article  PubMed  CAS  Google Scholar 

  36. Parratt JR (1997) Nitric oxide. A key mediator in sepsis and endotoxaemia? J Physiol Pharmacol 48:493–506

    PubMed  CAS  Google Scholar 

  37. Van Amersfoort ES, Van Berkel TJ, Kuiper J (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16:379–414. doi:10.1128/CMR.16.3.379-414.2003

    Article  PubMed  CAS  Google Scholar 

  38. Lucchi NW, Moore JM (2007) LPS induces secretion of chemokines by human syncytiotrophoblast cells in a MAPK-dependent manner. J Reprod Immunol 73:20–27. doi:10.1016/j.jri.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  39. Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62. doi:10.1002/hep.21060

    Article  PubMed  CAS  Google Scholar 

  40. Winwood PJ, Arthur MJ (1993) Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis 13:50–59

    Article  PubMed  CAS  Google Scholar 

  41. Dong Z, Wei H, Sun R, Tian Z (2007) The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol 4:241–252

    PubMed  CAS  Google Scholar 

  42. van der Bij GJ, Oosterling SJ, Meijer S, Beelen RH, van Egmond M (2005) Therapeutic potential of Kupffer cells in prevention of liver metastases outgrowth. Immunobiology 210:259–265. doi:10.1016/j.imbio.2005.05.020

    Article  PubMed  CAS  Google Scholar 

  43. Nolan JP (1981) Endotoxin, reticuloendothelial function, and liver injury. Hepatology 1:458–465. doi:10.1002/hep.1840010516

    Article  PubMed  CAS  Google Scholar 

  44. Gregory SH, Wing EJ (2002) Neutrophil-Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J Leukoc Biol 72:239–248

    PubMed  CAS  Google Scholar 

  45. Adams DH, Hubscher SG (2006) Systemic viral infections and collateral damage in the liver. Am J Pathol 168:1057–1059. doi:10.2353/ajpath.2006.051296

    Article  PubMed  CAS  Google Scholar 

  46. Jaeschke H, Bajt ML (2004) Critical role of CXC chemokines in endotoxemic liver injury in mice. J Leukoc Biol 76:1089–1090. doi:10.1189/jlb.0504309

    Article  PubMed  CAS  Google Scholar 

  47. Roberts LR (2005) Chemokines as attractive targets in liver carcinogenesis. Am J Gastroenterol 100:499–501. doi:10.1111/j.1572-0241.2005.t01-4-41219.x

    Article  PubMed  Google Scholar 

  48. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505. doi:10.1172/JCI26498

    Article  PubMed  CAS  Google Scholar 

  49. Kanno K, Tazuma S, Nishioka T, Hyogo H, Chayama K (2005) Angiotensin II participates in hepatic inflammation and fibrosis through MCP-1 expression. Dig Dis Sci 50:942–948. doi:10.1007/s10620-005-2669-7

    Article  PubMed  CAS  Google Scholar 

  50. Muhlbauer M, Bosserhoff AK, Hartmann A, Thasler WE, Weiss TS, Herfarth H et al (2003) A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 125:1085–1093. doi:10.1016/S0016-5085(03)01213-7

    Article  PubMed  Google Scholar 

  51. Czaja MJ, Geerts A, Xu J, Schmiedeberg P, Ju Y (1994) Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. J Leukoc Biol 55:120–126

    PubMed  CAS  Google Scholar 

  52. Nikolic J, Stojanovic I, Pavlovic R, Sokolovic D, Bjelakovic G, Beninati S (2007) The role of L-arginine in toxic liver failure: interrelation of arginase, polyamine catabolic enzymes and nitric oxide synthase. Amino Acids 32:127–131. doi:10.1007/s00726-006-0309-y

    Article  PubMed  CAS  Google Scholar 

  53. Veihelmann A, Brill T, Blobner M, Scheller I, Mayer B, Prolls M et al (1997) Inhibition of nitric oxide synthesis improves detoxication in inflammatory liver dysfunction in vivo. Am J Physiol 273:G530–G536

    PubMed  CAS  Google Scholar 

  54. Kershenobich Stalnikowitz D, Weissbrod AB (2003) Liver fibrosis and inflammation. A review. Ann Hepatol 2:159–163

    PubMed  Google Scholar 

  55. Mojena M, Hortelano S, Castrillo A, Diaz-Guerra MJ, Garcia-Barchino MJ, Saez GT et al (2001) Protection by nitric oxide against liver inflammatory injury in animals carrying a nitric oxide synthase-2 transgene. FASEB J 15:583–585

    PubMed  CAS  Google Scholar 

  56. Hines IN, Harada H, Flores S, Gao B, McCord JM, Grisham MB (2005) Endothelial nitric oxide synthase protects the post-ischemic liver: potential interactions with superoxide. Biomed Pharmacother 59:183–189. doi:10.1016/j.biopha.2005.03.011

    Article  PubMed  CAS  Google Scholar 

  57. Hsu CM, Wang JS, Liu CH, Chen LW (2002) Kupffer cells protect liver from ischemia-reperfusion injury by an inducible nitric oxide synthase-dependent mechanism. Shock 17:280–285. doi:10.1097/00024382-200204000-00007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kolios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolios, G., Valatas, V., Manousou, P. et al. Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells. Mol Cell Biochem 319, 91–98 (2008). https://doi.org/10.1007/s11010-008-9881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9881-7

Keywords

Navigation