Skip to main content

Advertisement

Log in

Proteomic studies of rat tibialis anterior muscle during postnatal growth and development

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, a proteomic analysis consisting of two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry was accomplished to investigate the complex protein expression patterns in rat tibialis anterior muscle during postnatal 3-month period. We determined the time-dependent expression alterations of 107 protein spots, among which 53 protein spots were identified. These identified proteins included skeletal contractile proteins, metabolic enzymes, chaperone, intermediate filament, and signal transduction proteins. The time-dependent expression of three proteins, such as Mylpf, desmin, and RKIP, was confirmed by Western blot analysis and immunohistochemistry. The functional implication of these expression changes was also discussed. We further analyzed the linkage and interactions among the differentially expressed proteins (MAPK1, RKIP, AHSG, etc.). Collectively, the results might add to the understanding of the molecular mechanisms regulating postnatal growth and development of rat tibialis anterior muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TA:

Tibialis anterior muscles

2-DE:

Two-dimensional gel electrophoresis

MALDI-TOF/TOF MS:

Matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry

ASB-14:

Amidosulfobetaine-14

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

DTT:

Dithiothreitol

EDTA:

Ethylene diamine tetraacetic acid

PMSF:

Phenylmethyl sulfonylfluoride

PVDF:

Polyvinylidene difluoride

RKIP:

Raf kinase inhibitor protein

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TBP:

Tri-butyl-phosphate

TBST:

Tris buffered saline-Tween-20

TFA:

Trifluoroacetic acid

References

  1. Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133:601–610

    Article  PubMed  CAS  Google Scholar 

  2. Johansen KA, Overturf K (2005) Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout(Oncorhynchus mykiss). Mar Biotechnol (NY) 7:576–587

    Article  CAS  Google Scholar 

  3. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  PubMed  CAS  Google Scholar 

  4. Anderson JE (1998) Murray L. Barr Award Lecture. Studies of the dynamics of skeletal muscle regeneration: the mouse came back!. Biochem Cell Biol 76:13–26

    Article  PubMed  CAS  Google Scholar 

  5. McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11:497–504

    Article  PubMed  CAS  Google Scholar 

  6. Friday BB, Mitchell PO, Kegley KM, Pavlath GK (2003) Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71:217–227

    Article  PubMed  CAS  Google Scholar 

  7. Bai Q, McGillivray C, da Costa N, Dornan S, Evans G, Stear MJ, Chang KC (2003) Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 4:8

    Article  PubMed  Google Scholar 

  8. Isfort RJ, Hinkle RT, Jones MB, Wang F, Greis KD, Sun Y, Keough TW, Anderson NL, Sheldon RJ (2000) Proteomic analysis of the atrophying rat soleus muscle following denervation. Electrophoresis 21:2228–2234

    Article  PubMed  CAS  Google Scholar 

  9. Sun H, Liu J, Ding F, Wang X, Liu M, Gu X (2006) Investigation of differentially expressed proteins in rat gastrocnemius muscle during denervation-reinnervation. J Muscle Res Cell Motil 27:241–250

    Article  PubMed  CAS  Google Scholar 

  10. Kislinger T, Gramolini AO, Pan Y, Rahman K, MacLennan DH, Emili A (2005) Proteome dynamics during C2C12 myoblast differentiation. Mol Cell Proteomics 4:887–901

    Article  PubMed  CAS  Google Scholar 

  11. Gonnet F, Bouazza B, Millot GA, Ziaei S, Garcia L, Butler-Browne GS, Mouly V, Tortajada J, Danos O, Svinartchouk F (2008) Proteome analysis of differentiating human myoblasts by dialysis-assisted two-dimensional gel electrophoresis (DAGE). Proteomics 8:264–278

    Article  PubMed  CAS  Google Scholar 

  12. Okumura N, Hashida-Okumura A, Kita K, Matsubae M, Matsubara T, Takao T, Nagai K (2005) Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics 5:2896–2906

    Article  PubMed  CAS  Google Scholar 

  13. Gamble SC, Dunn MJ, Wheeler CH, Joiner MC, Adu-Poku A, Arrand JE (2000) Expression of proteins coincident with inducible radioprotection in human lung epithelial cells. Cancer Res 60:2146–2151

    PubMed  CAS  Google Scholar 

  14. Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X (2005) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 128:1897–1910

    Article  PubMed  Google Scholar 

  15. Ngai SM, Pearlstone JR, Farah CS, Reinach FC, Smillie LB, Hodges RS (2001) Structural and functional studies on troponin I and troponin C interactions. J Cell Biochem 83:33–46

    Article  PubMed  CAS  Google Scholar 

  16. Helfman DM, Cheley S, Kuismanen E, Finn LA, Yamawaki-Kataoka Y (1986) Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol Cell Biol 6:3582–3595

    PubMed  CAS  Google Scholar 

  17. Agbulut O, Noirez P, Beaumont F, Butler-Browne G (2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95:399–406

    Article  PubMed  CAS  Google Scholar 

  18. Di Padova M, Caretti G, Zhao P, Hoffman EP, Sartorelli V (2007) MyoD acetylation influences temporal patterns of skeletal muscle gene expression. J Biol Chem 282:37650–37659

    Article  PubMed  CAS  Google Scholar 

  19. Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 88:1349–1353

    Article  PubMed  CAS  Google Scholar 

  20. Keller A, Peltzer J, Carpentier G, Horvath I, Olah J, Duchesnay A, Orosz F, Ovadi J (2007) Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta 1770:919–926

    PubMed  CAS  Google Scholar 

  21. Merkulova T, Dehaupas M, Nevers MC, Creminon C, Alameddine H, Keller A (2000) Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 267:3735–3743

    Article  PubMed  CAS  Google Scholar 

  22. Laskowska E (2007) Small heat shock proteins–role in apoptosis, cancerogenesis and diseases associated with protein aggregation. Postepy Biochem 53:19–26

    PubMed  CAS  Google Scholar 

  23. Inaguma Y, Goto S, Shinohara H, Hasegawa K, Ohshima K, Kato K (1993) Physiological and pathological changes in levels of the two small stress proteins, HSP27 and alpha B crystallin, in rat hindlimb muscles. J Biochem 114:378–384

    PubMed  CAS  Google Scholar 

  24. Costigan M, Mannion RJ, Kendall G, Lewis SE, Campagna JA, Coggeshall RE, Meridith-Middleton J, Tate S, Woolf CJ (1998) Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci 18:5891–5900

    PubMed  CAS  Google Scholar 

  25. Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106(Pt 4):1291–1300

    PubMed  CAS  Google Scholar 

  26. Wijnaendts LC, van der Linden JC, van Unnik AJ, Delemarre JF, Voute PA, Meijer CJ (1994) The expression pattern of contractile and intermediate filament proteins in developing skeletal muscle and rhabdomyosarcoma of childhood: diagnostic and prognostic utility. J Pathol 174:283–292

    Article  PubMed  CAS  Google Scholar 

  27. Kryszke MH, Moura-Neto V, Lilienbaum A, Paulin D, Auclair C (2001) Involvement of histone H4 gene transcription factor 1 in downregulation of vimentin gene expression during skeletal muscle differentiation. FEBS Lett 491:30–34

    Article  PubMed  CAS  Google Scholar 

  28. Sjoberg G, Jiang WQ, Ringertz NR, Lendahl U, Sejersen T (1994) Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res 214:447–458

    Article  PubMed  CAS  Google Scholar 

  29. Tannu NS, Rao VK, Chaudhary RM, Giorgianni F, Saeed AE, Gao Y, Raghow R (2004) Comparative proteomes of the proliferating C(2)C(12) myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program. Mol Cell Proteomics 3:1065–1082

    Article  PubMed  CAS  Google Scholar 

  30. Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS (2004) Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res 37:1819–1830

    PubMed  CAS  Google Scholar 

  31. Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22:103–116

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y (1994) Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 124:827–841

    Article  PubMed  CAS  Google Scholar 

  33. Hollrigl A, Puz S, Al-Dubai H, Kim JU, Capetanaki Y, Weitzer G (2002) Amino-terminally truncated desmin rescues fusion of des(-/-) myoblasts but negatively affects cardiomyogenesis and smooth muscle development. FEBS Lett 523:229–233

    Article  PubMed  CAS  Google Scholar 

  34. Paulin D, Li Z (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301:1–7

    Article  PubMed  CAS  Google Scholar 

  35. Yang Y, Makita T (1996) Immunocytochemical colocalization of desmin and vimentin in human fetal skeletal muscle cells. Anat Rec 246:64–70

    Article  PubMed  CAS  Google Scholar 

  36. Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D (2005) Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19:1143–1145

    PubMed  CAS  Google Scholar 

  37. Mathews ST, Chellam N, Srinivas PR, Cintron VJ, Leon MA, Goustin AS, Grunberger G (2000) Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol Cell Endocrinol 164:87–98

    Article  PubMed  CAS  Google Scholar 

  38. Schinke T, Koide T, Jahnen-Dechent W (1997) Human histidine-rich glycoprotein expressed in SF9 insect cells inhibits apatite formation. FEBS Lett 412:559–562

    Article  PubMed  CAS  Google Scholar 

  39. Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003) Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8:847–856

    Article  PubMed  CAS  Google Scholar 

  40. Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, Grant AL, Gerrard DE (2008) Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. FASEB J 22:2990–3000

    Article  PubMed  CAS  Google Scholar 

  41. Rautureau G, Jouvensal L, Decoville M, Locker D, Vovelle F, Schoentgen F (2006) Cloning, high yield over-expression, purification, and characterization of CG18594, a new PEBP/RKIP family member from Drosophila melanogaster. Protein Expr Purif 48:90–97

    Article  PubMed  CAS  Google Scholar 

  42. Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, Bonavida B (2004) Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res 91:169–200

    Article  PubMed  CAS  Google Scholar 

  43. Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM (2001) Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 21:7207–7217

    Article  PubMed  CAS  Google Scholar 

  44. Park S, Rath O, Beach S, Xiang X, Kelly SM, Luo Z, Kolch W, Yeung KC (2006) Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Lett 580:6405–6412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Hi-Tech Research and Development Program of China (863 Program, Grant No. 2006AA02A128), National Natural Science Foundation of China (Grant No.30670667) and University of Jiangsu Province Key Technological Research Project of China (Grant No. 05KJA31010). We thank professor Jie Liu for the assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Gu.

Additional information

Hualin Sun and Ting Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Zhu, T., Ding, F. et al. Proteomic studies of rat tibialis anterior muscle during postnatal growth and development. Mol Cell Biochem 332, 161–171 (2009). https://doi.org/10.1007/s11010-009-0186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0186-2

Keywords

Navigation